Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Kilowatt power scaling of an intrinsically low Brillouin and thermo-optic Yb-doped silica fiber [Invited]

Open Access Open Access

Abstract

The performance of optical fibers is dependent on both the fiber design and the materials from which it is made. While much of the development over the past few decades has focused on fiber geometry and microstructuring, more recent analyses have shown clear benefits of addressing parasitic nonlinearities at the origins of their light–matter interactions. Reported here are results on intrinsically low Brillouin and thermo-optic core fibers, fabricated using modified chemical vapor deposition. Specifically, fibers in the Yb-doped ${\rm{A}}{{\rm{l}}_2}{{\rm{O}}_3} {-} {{\rm{P}}_2}{{\rm{O}}_5} {-} {{\rm{B}}_2}{{\rm{O}}_3} {-} {\rm{Si}}{{\rm{O}}_2}$ system are developed based on how each glass constituent affects the material parameters that enable both stimulated Brillouin scattering (SBS) and transverse mode instability (TMI). One fiber, developed to be very heavily doped, exhibited thermo-optic and Brillouin gain coefficients up to ${\sim}{{3}}\;{\rm{dB}}$ and 6 dB below conventional laser fibers, respectively. A second fiber, designed to approximate a commercial double-clad laser fiber, which necessitated lower doping levels, was output power scaled to over 1 kW with an efficiency over 70% and no observed photodarkening under conventional testing. Design curves for the enabling material properties that drive TMI and SBS also are provided as functions of compositions as a tool for the community to further study and develop intrinsically low-nonlinearity fiber lasers.

© 2021 Optical Society of America

Full Article  |  PDF Article

Corrections

Bülend Ortaç, Deepak Jain, Rajan Jha, Jonathan Hu, and Bora Ung, "Specialty optical fiber modeling, fabrication, and characterization feature issue: publisher’s note," J. Opt. Soc. Am. B 39, 401-401 (2022)
https://opg.optica.org/josab/abstract.cfm?uri=josab-39-1-401

20 December 2021: A typographical correction was made to the title.


More Like This
Ytterbium-doped multicomponent fluorosilicate optical fibers with intrinsically low optical nonlinearities

M. Cavillon, C. Kucera, T. W. Hawkins, N. Yu, P. Dragic, and J. Ballato
Opt. Mater. Express 8(4) 744-760 (2018)

Thermo-optic coefficient of B2O3 and GeO2 co-doped silica fibers

G. Pan, N. Yu, B. Meehan, T. W. Hawkins, J. Ballato, and P. D. Dragic
Opt. Mater. Express 10(7) 1509-1521 (2020)

Photosensitive highly Er/Yb co-doped phosphosilicate optical fibers for continuous-wave single-frequency fiber laser applications

A. A. Rybaltovsky, D. S. Lipatov, A. S. Lobanov, A. N. Abramov, A. A. Umnikov, A. P. Bazakutsa, K. K. Bobkov, O. V. Butov, and A. N. Gur’yanov
J. Opt. Soc. Am. B 37(10) 3077-3083 (2020)

References

  • View by:

  1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B. 27, B63–B92 (2010).
    [Crossref]
  2. M. N. Zervas and C. A. Codemard, “High power fiber lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 20, 219–241 (2014).
    [Crossref]
  3. M. N. Zervas, “Transverse mode instability, thermal lensing and power scaling in Yb3+-doped high-power fiber amplifiers,” Opt. Express 27, 19019–19041 (2019).
    [Crossref]
  4. C. Jauregui, C. Stihler, and J. Limpert, “Transverse mode instability,” Adv. Opt. Photon. 12, 429–484 (2020).
    [Crossref]
  5. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16, 13240–13266 (2008).
    [Crossref]
  6. L. Dong, F. Kong, G. Gu, T. W. Hawkins, M. Jones, J. Parsons, M. Kalichevsky-Dong, K. Saitoh, B. Pulford, and I. Dajani, “Large-mode-area all-solid photonic bandgap fibers for the mitigation of optical nonlinearities,” IEEE J. Sel. Top. Quantum Electron. 22, 316–322 (2016).
    [Crossref]
  7. J. W. Nicholson, A. DeSantolo, M. F. Yan, P. Wisk, B. Mangan, G. Puc, A. W. Yu, and M. A. Stephen, “High energy, 1572.3 nm pulses for CO2 LIDAR from a polarization-maintaining, very-large-mode-area, Er-doped fiber amplifier,” Opt. Express 24, 19961–19968 (2016).
    [Crossref]
  8. X. Zhen, X. Wang, S. Lou, Z. Tang, H. Jia, S. Gu, and J. Han, “Large-mode-area all-solid anti-resonant fiber with single-mode operation for high-power fiber lasers,” Opt. Lett. 46, 1908–1911 (2021).
    [Crossref]
  9. J.-P. Yehouessi, A. Baz, L. Bigot, G. Bouwmans, O. Vanvincq, M. Douay, and Y. Quiquempois, “Design and realization of flexible very large mode area pixelated Bragg fibers,” Opt. Lett. 40, 363–366 (2015).
    [Crossref]
  10. J. Ballato, M. Cavillon, and P. D. Dragic, “A unified materials approach to mitigating optical nonlinearities in optical fiber. I. Thermodynamics of optical scattering,” Int. J. Appl. Glass Sci. 9, 263–277 (2018).
    [Crossref]
  11. M. Cavillon, C. Kucera, T. W. Hawkins, J. Dawson, P. D. Dragic, and J. Ballato, “A unified materials approach to mitigating optical nonlinearities in optical fiber. III. Canonical examples and materials road map,” Int. J. Appl. Glass Sci. 9, 447–470 (2018).
    [Crossref]
  12. P. D. Dragic, M. Cavillon, and J. Ballato, “Materials for optical fiber lasers: a review,” Appl. Phys. Rev. 5, 041301 (2018).
    [Crossref]
  13. L. Dong, “Stimulated thermal Rayleigh scattering in optical fibers,” Opt. Express 21, 2642–2656 (2013).
    [Crossref]
  14. A. Smith and J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19, 10180–10192 (2011).
    [Crossref]
  15. J. Ballato and P. D. Dragic, “Glass: the carrier of light—Part II—A brief look into the future of optical fiber,” Int. J. Appl. Glass Sci. 12, 3–24 (2021).
    [Crossref]
  16. Y. Glick, Y. Sintov, R. Zuitlin, S. Pearl, Y. Shamir, R. Feldman, Z. Horvitz, and N. Shafir, “Single-mode 230 W output power 1018 nm fiber laser and ASE competition suppression,” J. Opt. Soc. Am. B 33, 1392–1398 (2016).
    [Crossref]
  17. N. Yu, M. Cavillon, C. Kucera, T. W. Hawkins, J. Ballato, and P. D. Dragic, “Less than 1% quantum defect fiber lasers via ytterbium-doped multicomponent fluorosilicate optical fiber,” Opt. Lett. 43, 3096–3099 (2018).
    [Crossref]
  18. M. Cavillon, C. Kucera, T. W. Hawkins, N. Yu, P. D. Dragic, and J. Ballato, “Ytterbium-doped multicomponent fluorosilicate optical fibers with intrinsically low optical nonlinearities,” Opt. Mater. Express 8, 744–760 (2018).
    [Crossref]
  19. P. D. Dragic, M. Cavillon, and J. Ballato, “On the thermo-optic coefficient of P2O5 in SiO2,” Opt. Mater. Express 7, 3654–3661 (2017).
    [Crossref]
  20. G. Pan, N. Yu, B. Meehan, T. W. Hawkins, J. Ballato, and P. D. Dragic, “Thermo-optic coefficient of B2O3 and GeO2 co-doped silica fibers,” Opt. Mater. Express 10, 1509–1521 (2020).
    [Crossref]
  21. J. Ballato, T. W. Hawkins, N. Yu, and P. D. Dragic, “Materials for TMI mitigation,” Proc. SPIE 11665, 1166520 (2021).
    [Crossref]
  22. P. D. Dragic, M. Cavillon, A. Ballato, and J. Ballato, “A unified materials approach to mitigating optical nonlinearities in optical fiber. II. A. Material additivity models and basic glass properties,” Int. J. Appl. Glass Sci. 9, 278–287 (2018).
    [Crossref]
  23. P. D. Dragic, M. Cavillon, A. Ballato, and J. Ballato, “A unified materials approach to mitigating optical nonlinearities in optical fiber. II. B. The optical fiber, material additivity and the nonlinear coefficients,” Int. J. Appl. Glass Sci. 9, 307–318 (2018).
    [Crossref]
  24. N. Shibata and T. Edahiro, “Refractive-index dispersion for GeO2-, P2O5-, and B2O3-doped silica glasses in optical fibers,” Trans. IECE Jpn. E 65, 166–172 (1982).
  25. M. M. Bubnov, V. N. Vechkanov, A. N. Gur’Yanov, K. V. Zotov, D. S. Lipatov, M. E. Likhachev, and M. V. Yashkov, “Fabrication and optical properties of fibers with an Al2O3-P2O5-SiO2 glass core,” Inorg. Mater. 45, 444–449 (2009).
    [Crossref]
  26. S. H. Wemple, D. A. Pinnow, T. C. Rich, R. E. Jaeger, and L. G. van Uitert, “Binary SiO2–B2O3 glass system: refractive index behavior and energy gap considerations,” J. Appl. Phys. 44, 5432–5437 (1973).
    [Crossref]
  27. D. J. DiGiovanni, J. B. MacChesney, and T. Y. Kometani, “Structure and properties of silica containing aluminum and phosphorus near the AlPO4 join,” J. Non-Cryst. Solids 113, 58–64 (1989).
    [Crossref]
  28. M. Cavillon, J. Furtick, C. Kucera, C. Ryan, M. Tuggle, M. Jones, T. W. Hawkins, P. D. Dragic, and J. Ballato, “Brillouin properties of a novel strontium aluminosilicate glass optical fiber,” J. Lightwave Technol. 34, 1435–1441 (2016).
    [Crossref]
  29. J. Ballato and A. C. Peacock, “Perspective: molten core optical fiber fabrication—A route to new materials and applications,” APL Photon. 3, 120903 (2018).
    [Crossref]
  30. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).
  31. P. D. Dragic, “Brillouin gain reduction via B2O3 doping,” J. Lightwave Technol. 29, 967–973 (2011).
    [Crossref]
  32. P. D. Dragic, J. Ballato, S. Morris, and T. W. Hawkins, “The Brillouin gain coefficient of Yb-doped aluminosilicate glass optical fibers,” Opt. Mater. 35, 1627–1632 (2013).
    [Crossref]
  33. P. D. Dragic, J. Ballato, S. Morris, and T. W. Hawkins, “Pockels’ coefficients of alumina in aluminosilicate optical fiber,” J. Opt. Soc. Am. B 30, 244–250 (2013).
    [Crossref]
  34. N. Yu, T. W. Hawkins, T. V. Bui, M. Cavillon, J. Ballato, and P. D. Dragic, “AlPO4 in silica glass optical fibers: deduction of additional material properties,” IEEE Photon. J. 11, 7103913 (2019).
    [Crossref]
  35. A. V. Anan’ev, V. N. Bogdanov, B. Champagnon, M. Ferrari, G. O. Karapetyan, L. V. Maksimov, S. N. Smerdin, and V. A. Solovyev, “Origin of Rayleigh scattering and anomaly of elastic properties in vitreous and molten GeO2,” J. Non-Cryst. Solids 354, 3049–3058 (2008).
    [Crossref]
  36. P.-C. Law, A. Croteau, and P. D. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: the strain-optic and strain-acoustic coefficients,” Opt. Mater. Express 2, 391–404 (2012).
    [Crossref]
  37. P.-C. Law, Y.-S. Liu, A. Croteau, and P. D. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: acoustic velocity, acoustic attenuation, and thermo-acoustic coefficient,” Opt. Mater. Express 1, 686–699 (2011).
    [Crossref]
  38. M. A. Melkumov, A. Y. Laptev, M. V. Yashkov, N. N. Vechkanov, A. N. Guryanov, and I. A. Bufetov, “Effects of Yb3+ and Er3+ concentrations and doping procedure on excitation transfer efficiency in Er-Yb doped phosphosilicate fibers,” Inorg. Mater. 46, 299–303 (2010).
    [Crossref]
  39. T. W. Hawkins, “The materials science and engineering of advanced Yb-doped glasses and fibers for high-power lasers,” Ph.D. dissertation (Clemson University, 2020).
  40. http://www.interfiberanalysis.com .
  41. A. D. Yablon, “Multi-wavelength optical fiber refractive index profiling by spatially resolved Fourier transform spectroscopy,” J. Lightwave Technol. 28, 360–364 (2010).
    [Crossref]
  42. N. Yu and P. D. Dragic, “On the use of Brillouin scattering to evaluate quantum conversion efficiency in Yb-doped optical fibers,” J. Lightwave Technol. 39, 4158–4165 (2021).
    [Crossref]
  43. https://www.rp-photonics.com/fiberpower.html .
  44. J. Knall, M. Engholm, J. Ballato, P. D. Dragic, N. Yu, and M. J. Digonnet, “Experimental comparison of silica fibers for laser cooling,” Opt. Lett. 45, 4020–4023 (2020).
    [Crossref]
  45. A. Flores, C. Robin, A. Lanari, and I. Dajani, “Pseudo-random binary sequence phase modulation for narrow linewidth, kilowatt, monolithic fiber amplifiers,” Opt. Express 22, 17735–17744 (2014).
    [Crossref]
  46. S. Suzuki, H. A. McKay, X. Peng, L. Fu, and L. Dong, “Highly ytterbium-doped silica fibers with low photodarkening,” Opt. Express 17, 9924–9932 (2009).
    [Crossref]
  47. A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
    [Crossref]
  48. M. Liu, Y. Yang, H. Shen, J. Zhang, X. Zou, H. Wang, L. Yuan, Y. You, G. Bai, B. He, and J. Zhou, “1.27 kW, 2.2 GHz pseudo-random binary sequence phase modulated fiber amplifier with Brillouin gain-spectrum overlap,” Sci. Rep. 10, 629 (2020).
    [Crossref]
  49. C. Jun, M. Jung, W. Shin, B. Yu, Y. S. Yoon, Y. Park, and K. Choi, “818 W Yb-doped amplifier with <7 GHz linewidth based on pseudo-random phase modulation in polarization-maintained all-fiber configuration,” Laser Phys. Lett. 16, 015102 (2018).
    [Crossref]
  50. B. Anderson, K. MacDonald, A. Taliaferro, and A. Flores, “SBS suppression techniques in high-power, narrow-linewidth fiber amplifiers,” Proc. SPIE 11665, 116650G (2021).
    [Crossref]

2021 (5)

X. Zhen, X. Wang, S. Lou, Z. Tang, H. Jia, S. Gu, and J. Han, “Large-mode-area all-solid anti-resonant fiber with single-mode operation for high-power fiber lasers,” Opt. Lett. 46, 1908–1911 (2021).
[Crossref]

J. Ballato and P. D. Dragic, “Glass: the carrier of light—Part II—A brief look into the future of optical fiber,” Int. J. Appl. Glass Sci. 12, 3–24 (2021).
[Crossref]

J. Ballato, T. W. Hawkins, N. Yu, and P. D. Dragic, “Materials for TMI mitigation,” Proc. SPIE 11665, 1166520 (2021).
[Crossref]

N. Yu and P. D. Dragic, “On the use of Brillouin scattering to evaluate quantum conversion efficiency in Yb-doped optical fibers,” J. Lightwave Technol. 39, 4158–4165 (2021).
[Crossref]

B. Anderson, K. MacDonald, A. Taliaferro, and A. Flores, “SBS suppression techniques in high-power, narrow-linewidth fiber amplifiers,” Proc. SPIE 11665, 116650G (2021).
[Crossref]

2020 (4)

2019 (2)

M. N. Zervas, “Transverse mode instability, thermal lensing and power scaling in Yb3+-doped high-power fiber amplifiers,” Opt. Express 27, 19019–19041 (2019).
[Crossref]

N. Yu, T. W. Hawkins, T. V. Bui, M. Cavillon, J. Ballato, and P. D. Dragic, “AlPO4 in silica glass optical fibers: deduction of additional material properties,” IEEE Photon. J. 11, 7103913 (2019).
[Crossref]

2018 (9)

J. Ballato and A. C. Peacock, “Perspective: molten core optical fiber fabrication—A route to new materials and applications,” APL Photon. 3, 120903 (2018).
[Crossref]

P. D. Dragic, M. Cavillon, A. Ballato, and J. Ballato, “A unified materials approach to mitigating optical nonlinearities in optical fiber. II. A. Material additivity models and basic glass properties,” Int. J. Appl. Glass Sci. 9, 278–287 (2018).
[Crossref]

P. D. Dragic, M. Cavillon, A. Ballato, and J. Ballato, “A unified materials approach to mitigating optical nonlinearities in optical fiber. II. B. The optical fiber, material additivity and the nonlinear coefficients,” Int. J. Appl. Glass Sci. 9, 307–318 (2018).
[Crossref]

N. Yu, M. Cavillon, C. Kucera, T. W. Hawkins, J. Ballato, and P. D. Dragic, “Less than 1% quantum defect fiber lasers via ytterbium-doped multicomponent fluorosilicate optical fiber,” Opt. Lett. 43, 3096–3099 (2018).
[Crossref]

M. Cavillon, C. Kucera, T. W. Hawkins, N. Yu, P. D. Dragic, and J. Ballato, “Ytterbium-doped multicomponent fluorosilicate optical fibers with intrinsically low optical nonlinearities,” Opt. Mater. Express 8, 744–760 (2018).
[Crossref]

J. Ballato, M. Cavillon, and P. D. Dragic, “A unified materials approach to mitigating optical nonlinearities in optical fiber. I. Thermodynamics of optical scattering,” Int. J. Appl. Glass Sci. 9, 263–277 (2018).
[Crossref]

M. Cavillon, C. Kucera, T. W. Hawkins, J. Dawson, P. D. Dragic, and J. Ballato, “A unified materials approach to mitigating optical nonlinearities in optical fiber. III. Canonical examples and materials road map,” Int. J. Appl. Glass Sci. 9, 447–470 (2018).
[Crossref]

P. D. Dragic, M. Cavillon, and J. Ballato, “Materials for optical fiber lasers: a review,” Appl. Phys. Rev. 5, 041301 (2018).
[Crossref]

C. Jun, M. Jung, W. Shin, B. Yu, Y. S. Yoon, Y. Park, and K. Choi, “818 W Yb-doped amplifier with <7 GHz linewidth based on pseudo-random phase modulation in polarization-maintained all-fiber configuration,” Laser Phys. Lett. 16, 015102 (2018).
[Crossref]

2017 (1)

2016 (4)

2015 (1)

2014 (2)

2013 (3)

2012 (1)

2011 (3)

2010 (3)

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B. 27, B63–B92 (2010).
[Crossref]

M. A. Melkumov, A. Y. Laptev, M. V. Yashkov, N. N. Vechkanov, A. N. Guryanov, and I. A. Bufetov, “Effects of Yb3+ and Er3+ concentrations and doping procedure on excitation transfer efficiency in Er-Yb doped phosphosilicate fibers,” Inorg. Mater. 46, 299–303 (2010).
[Crossref]

A. D. Yablon, “Multi-wavelength optical fiber refractive index profiling by spatially resolved Fourier transform spectroscopy,” J. Lightwave Technol. 28, 360–364 (2010).
[Crossref]

2009 (2)

S. Suzuki, H. A. McKay, X. Peng, L. Fu, and L. Dong, “Highly ytterbium-doped silica fibers with low photodarkening,” Opt. Express 17, 9924–9932 (2009).
[Crossref]

M. M. Bubnov, V. N. Vechkanov, A. N. Gur’Yanov, K. V. Zotov, D. S. Lipatov, M. E. Likhachev, and M. V. Yashkov, “Fabrication and optical properties of fibers with an Al2O3-P2O5-SiO2 glass core,” Inorg. Mater. 45, 444–449 (2009).
[Crossref]

2008 (2)

A. V. Anan’ev, V. N. Bogdanov, B. Champagnon, M. Ferrari, G. O. Karapetyan, L. V. Maksimov, S. N. Smerdin, and V. A. Solovyev, “Origin of Rayleigh scattering and anomaly of elastic properties in vitreous and molten GeO2,” J. Non-Cryst. Solids 354, 3049–3058 (2008).
[Crossref]

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16, 13240–13266 (2008).
[Crossref]

2004 (1)

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[Crossref]

1989 (1)

D. J. DiGiovanni, J. B. MacChesney, and T. Y. Kometani, “Structure and properties of silica containing aluminum and phosphorus near the AlPO4 join,” J. Non-Cryst. Solids 113, 58–64 (1989).
[Crossref]

1982 (1)

N. Shibata and T. Edahiro, “Refractive-index dispersion for GeO2-, P2O5-, and B2O3-doped silica glasses in optical fibers,” Trans. IECE Jpn. E 65, 166–172 (1982).

1973 (1)

S. H. Wemple, D. A. Pinnow, T. C. Rich, R. E. Jaeger, and L. G. van Uitert, “Binary SiO2–B2O3 glass system: refractive index behavior and energy gap considerations,” J. Appl. Phys. 44, 5432–5437 (1973).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).

Anan’ev, A. V.

A. V. Anan’ev, V. N. Bogdanov, B. Champagnon, M. Ferrari, G. O. Karapetyan, L. V. Maksimov, S. N. Smerdin, and V. A. Solovyev, “Origin of Rayleigh scattering and anomaly of elastic properties in vitreous and molten GeO2,” J. Non-Cryst. Solids 354, 3049–3058 (2008).
[Crossref]

Anderson, B.

B. Anderson, K. MacDonald, A. Taliaferro, and A. Flores, “SBS suppression techniques in high-power, narrow-linewidth fiber amplifiers,” Proc. SPIE 11665, 116650G (2021).
[Crossref]

Bai, G.

M. Liu, Y. Yang, H. Shen, J. Zhang, X. Zou, H. Wang, L. Yuan, Y. You, G. Bai, B. He, and J. Zhou, “1.27 kW, 2.2 GHz pseudo-random binary sequence phase modulated fiber amplifier with Brillouin gain-spectrum overlap,” Sci. Rep. 10, 629 (2020).
[Crossref]

Ballato, A.

P. D. Dragic, M. Cavillon, A. Ballato, and J. Ballato, “A unified materials approach to mitigating optical nonlinearities in optical fiber. II. B. The optical fiber, material additivity and the nonlinear coefficients,” Int. J. Appl. Glass Sci. 9, 307–318 (2018).
[Crossref]

P. D. Dragic, M. Cavillon, A. Ballato, and J. Ballato, “A unified materials approach to mitigating optical nonlinearities in optical fiber. II. A. Material additivity models and basic glass properties,” Int. J. Appl. Glass Sci. 9, 278–287 (2018).
[Crossref]

Ballato, J.

J. Ballato, T. W. Hawkins, N. Yu, and P. D. Dragic, “Materials for TMI mitigation,” Proc. SPIE 11665, 1166520 (2021).
[Crossref]

J. Ballato and P. D. Dragic, “Glass: the carrier of light—Part II—A brief look into the future of optical fiber,” Int. J. Appl. Glass Sci. 12, 3–24 (2021).
[Crossref]

G. Pan, N. Yu, B. Meehan, T. W. Hawkins, J. Ballato, and P. D. Dragic, “Thermo-optic coefficient of B2O3 and GeO2 co-doped silica fibers,” Opt. Mater. Express 10, 1509–1521 (2020).
[Crossref]

J. Knall, M. Engholm, J. Ballato, P. D. Dragic, N. Yu, and M. J. Digonnet, “Experimental comparison of silica fibers for laser cooling,” Opt. Lett. 45, 4020–4023 (2020).
[Crossref]

N. Yu, T. W. Hawkins, T. V. Bui, M. Cavillon, J. Ballato, and P. D. Dragic, “AlPO4 in silica glass optical fibers: deduction of additional material properties,” IEEE Photon. J. 11, 7103913 (2019).
[Crossref]

P. D. Dragic, M. Cavillon, A. Ballato, and J. Ballato, “A unified materials approach to mitigating optical nonlinearities in optical fiber. II. A. Material additivity models and basic glass properties,” Int. J. Appl. Glass Sci. 9, 278–287 (2018).
[Crossref]

M. Cavillon, C. Kucera, T. W. Hawkins, N. Yu, P. D. Dragic, and J. Ballato, “Ytterbium-doped multicomponent fluorosilicate optical fibers with intrinsically low optical nonlinearities,” Opt. Mater. Express 8, 744–760 (2018).
[Crossref]

N. Yu, M. Cavillon, C. Kucera, T. W. Hawkins, J. Ballato, and P. D. Dragic, “Less than 1% quantum defect fiber lasers via ytterbium-doped multicomponent fluorosilicate optical fiber,” Opt. Lett. 43, 3096–3099 (2018).
[Crossref]

P. D. Dragic, M. Cavillon, A. Ballato, and J. Ballato, “A unified materials approach to mitigating optical nonlinearities in optical fiber. II. B. The optical fiber, material additivity and the nonlinear coefficients,” Int. J. Appl. Glass Sci. 9, 307–318 (2018).
[Crossref]

J. Ballato and A. C. Peacock, “Perspective: molten core optical fiber fabrication—A route to new materials and applications,” APL Photon. 3, 120903 (2018).
[Crossref]

P. D. Dragic, M. Cavillon, and J. Ballato, “Materials for optical fiber lasers: a review,” Appl. Phys. Rev. 5, 041301 (2018).
[Crossref]

M. Cavillon, C. Kucera, T. W. Hawkins, J. Dawson, P. D. Dragic, and J. Ballato, “A unified materials approach to mitigating optical nonlinearities in optical fiber. III. Canonical examples and materials road map,” Int. J. Appl. Glass Sci. 9, 447–470 (2018).
[Crossref]

J. Ballato, M. Cavillon, and P. D. Dragic, “A unified materials approach to mitigating optical nonlinearities in optical fiber. I. Thermodynamics of optical scattering,” Int. J. Appl. Glass Sci. 9, 263–277 (2018).
[Crossref]

P. D. Dragic, M. Cavillon, and J. Ballato, “On the thermo-optic coefficient of P2O5 in SiO2,” Opt. Mater. Express 7, 3654–3661 (2017).
[Crossref]

M. Cavillon, J. Furtick, C. Kucera, C. Ryan, M. Tuggle, M. Jones, T. W. Hawkins, P. D. Dragic, and J. Ballato, “Brillouin properties of a novel strontium aluminosilicate glass optical fiber,” J. Lightwave Technol. 34, 1435–1441 (2016).
[Crossref]

P. D. Dragic, J. Ballato, S. Morris, and T. W. Hawkins, “The Brillouin gain coefficient of Yb-doped aluminosilicate glass optical fibers,” Opt. Mater. 35, 1627–1632 (2013).
[Crossref]

P. D. Dragic, J. Ballato, S. Morris, and T. W. Hawkins, “Pockels’ coefficients of alumina in aluminosilicate optical fiber,” J. Opt. Soc. Am. B 30, 244–250 (2013).
[Crossref]

Barty, C. P. J.

Baz, A.

Beach, R. J.

Bigot, L.

Bogdanov, V. N.

A. V. Anan’ev, V. N. Bogdanov, B. Champagnon, M. Ferrari, G. O. Karapetyan, L. V. Maksimov, S. N. Smerdin, and V. A. Solovyev, “Origin of Rayleigh scattering and anomaly of elastic properties in vitreous and molten GeO2,” J. Non-Cryst. Solids 354, 3049–3058 (2008).
[Crossref]

Bouwmans, G.

Bubnov, M. M.

M. M. Bubnov, V. N. Vechkanov, A. N. Gur’Yanov, K. V. Zotov, D. S. Lipatov, M. E. Likhachev, and M. V. Yashkov, “Fabrication and optical properties of fibers with an Al2O3-P2O5-SiO2 glass core,” Inorg. Mater. 45, 444–449 (2009).
[Crossref]

Bufetov, I. A.

M. A. Melkumov, A. Y. Laptev, M. V. Yashkov, N. N. Vechkanov, A. N. Guryanov, and I. A. Bufetov, “Effects of Yb3+ and Er3+ concentrations and doping procedure on excitation transfer efficiency in Er-Yb doped phosphosilicate fibers,” Inorg. Mater. 46, 299–303 (2010).
[Crossref]

Bui, T. V.

N. Yu, T. W. Hawkins, T. V. Bui, M. Cavillon, J. Ballato, and P. D. Dragic, “AlPO4 in silica glass optical fibers: deduction of additional material properties,” IEEE Photon. J. 11, 7103913 (2019).
[Crossref]

Cavillon, M.

N. Yu, T. W. Hawkins, T. V. Bui, M. Cavillon, J. Ballato, and P. D. Dragic, “AlPO4 in silica glass optical fibers: deduction of additional material properties,” IEEE Photon. J. 11, 7103913 (2019).
[Crossref]

P. D. Dragic, M. Cavillon, A. Ballato, and J. Ballato, “A unified materials approach to mitigating optical nonlinearities in optical fiber. II. A. Material additivity models and basic glass properties,” Int. J. Appl. Glass Sci. 9, 278–287 (2018).
[Crossref]

P. D. Dragic, M. Cavillon, A. Ballato, and J. Ballato, “A unified materials approach to mitigating optical nonlinearities in optical fiber. II. B. The optical fiber, material additivity and the nonlinear coefficients,” Int. J. Appl. Glass Sci. 9, 307–318 (2018).
[Crossref]

P. D. Dragic, M. Cavillon, and J. Ballato, “Materials for optical fiber lasers: a review,” Appl. Phys. Rev. 5, 041301 (2018).
[Crossref]

M. Cavillon, C. Kucera, T. W. Hawkins, N. Yu, P. D. Dragic, and J. Ballato, “Ytterbium-doped multicomponent fluorosilicate optical fibers with intrinsically low optical nonlinearities,” Opt. Mater. Express 8, 744–760 (2018).
[Crossref]

N. Yu, M. Cavillon, C. Kucera, T. W. Hawkins, J. Ballato, and P. D. Dragic, “Less than 1% quantum defect fiber lasers via ytterbium-doped multicomponent fluorosilicate optical fiber,” Opt. Lett. 43, 3096–3099 (2018).
[Crossref]

J. Ballato, M. Cavillon, and P. D. Dragic, “A unified materials approach to mitigating optical nonlinearities in optical fiber. I. Thermodynamics of optical scattering,” Int. J. Appl. Glass Sci. 9, 263–277 (2018).
[Crossref]

M. Cavillon, C. Kucera, T. W. Hawkins, J. Dawson, P. D. Dragic, and J. Ballato, “A unified materials approach to mitigating optical nonlinearities in optical fiber. III. Canonical examples and materials road map,” Int. J. Appl. Glass Sci. 9, 447–470 (2018).
[Crossref]

P. D. Dragic, M. Cavillon, and J. Ballato, “On the thermo-optic coefficient of P2O5 in SiO2,” Opt. Mater. Express 7, 3654–3661 (2017).
[Crossref]

M. Cavillon, J. Furtick, C. Kucera, C. Ryan, M. Tuggle, M. Jones, T. W. Hawkins, P. D. Dragic, and J. Ballato, “Brillouin properties of a novel strontium aluminosilicate glass optical fiber,” J. Lightwave Technol. 34, 1435–1441 (2016).
[Crossref]

Champagnon, B.

A. V. Anan’ev, V. N. Bogdanov, B. Champagnon, M. Ferrari, G. O. Karapetyan, L. V. Maksimov, S. N. Smerdin, and V. A. Solovyev, “Origin of Rayleigh scattering and anomaly of elastic properties in vitreous and molten GeO2,” J. Non-Cryst. Solids 354, 3049–3058 (2008).
[Crossref]

Choi, K.

C. Jun, M. Jung, W. Shin, B. Yu, Y. S. Yoon, Y. Park, and K. Choi, “818 W Yb-doped amplifier with <7 GHz linewidth based on pseudo-random phase modulation in polarization-maintained all-fiber configuration,” Laser Phys. Lett. 16, 015102 (2018).
[Crossref]

Clarkson, W. A.

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B. 27, B63–B92 (2010).
[Crossref]

Codemard, C. A.

M. N. Zervas and C. A. Codemard, “High power fiber lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 20, 219–241 (2014).
[Crossref]

Croteau, A.

Dajani, I.

L. Dong, F. Kong, G. Gu, T. W. Hawkins, M. Jones, J. Parsons, M. Kalichevsky-Dong, K. Saitoh, B. Pulford, and I. Dajani, “Large-mode-area all-solid photonic bandgap fibers for the mitigation of optical nonlinearities,” IEEE J. Sel. Top. Quantum Electron. 22, 316–322 (2016).
[Crossref]

A. Flores, C. Robin, A. Lanari, and I. Dajani, “Pseudo-random binary sequence phase modulation for narrow linewidth, kilowatt, monolithic fiber amplifiers,” Opt. Express 22, 17735–17744 (2014).
[Crossref]

Dawson, J.

M. Cavillon, C. Kucera, T. W. Hawkins, J. Dawson, P. D. Dragic, and J. Ballato, “A unified materials approach to mitigating optical nonlinearities in optical fiber. III. Canonical examples and materials road map,” Int. J. Appl. Glass Sci. 9, 447–470 (2018).
[Crossref]

Dawson, J. W.

DeSantolo, A.

DiGiovanni, D. J.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[Crossref]

D. J. DiGiovanni, J. B. MacChesney, and T. Y. Kometani, “Structure and properties of silica containing aluminum and phosphorus near the AlPO4 join,” J. Non-Cryst. Solids 113, 58–64 (1989).
[Crossref]

Digonnet, M. J.

DiMarcello, F. V.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[Crossref]

Dong, L.

L. Dong, F. Kong, G. Gu, T. W. Hawkins, M. Jones, J. Parsons, M. Kalichevsky-Dong, K. Saitoh, B. Pulford, and I. Dajani, “Large-mode-area all-solid photonic bandgap fibers for the mitigation of optical nonlinearities,” IEEE J. Sel. Top. Quantum Electron. 22, 316–322 (2016).
[Crossref]

L. Dong, “Stimulated thermal Rayleigh scattering in optical fibers,” Opt. Express 21, 2642–2656 (2013).
[Crossref]

S. Suzuki, H. A. McKay, X. Peng, L. Fu, and L. Dong, “Highly ytterbium-doped silica fibers with low photodarkening,” Opt. Express 17, 9924–9932 (2009).
[Crossref]

Douay, M.

Dragic, P. D.

J. Ballato and P. D. Dragic, “Glass: the carrier of light—Part II—A brief look into the future of optical fiber,” Int. J. Appl. Glass Sci. 12, 3–24 (2021).
[Crossref]

J. Ballato, T. W. Hawkins, N. Yu, and P. D. Dragic, “Materials for TMI mitigation,” Proc. SPIE 11665, 1166520 (2021).
[Crossref]

N. Yu and P. D. Dragic, “On the use of Brillouin scattering to evaluate quantum conversion efficiency in Yb-doped optical fibers,” J. Lightwave Technol. 39, 4158–4165 (2021).
[Crossref]

J. Knall, M. Engholm, J. Ballato, P. D. Dragic, N. Yu, and M. J. Digonnet, “Experimental comparison of silica fibers for laser cooling,” Opt. Lett. 45, 4020–4023 (2020).
[Crossref]

G. Pan, N. Yu, B. Meehan, T. W. Hawkins, J. Ballato, and P. D. Dragic, “Thermo-optic coefficient of B2O3 and GeO2 co-doped silica fibers,” Opt. Mater. Express 10, 1509–1521 (2020).
[Crossref]

N. Yu, T. W. Hawkins, T. V. Bui, M. Cavillon, J. Ballato, and P. D. Dragic, “AlPO4 in silica glass optical fibers: deduction of additional material properties,” IEEE Photon. J. 11, 7103913 (2019).
[Crossref]

P. D. Dragic, M. Cavillon, A. Ballato, and J. Ballato, “A unified materials approach to mitigating optical nonlinearities in optical fiber. II. A. Material additivity models and basic glass properties,” Int. J. Appl. Glass Sci. 9, 278–287 (2018).
[Crossref]

P. D. Dragic, M. Cavillon, A. Ballato, and J. Ballato, “A unified materials approach to mitigating optical nonlinearities in optical fiber. II. B. The optical fiber, material additivity and the nonlinear coefficients,” Int. J. Appl. Glass Sci. 9, 307–318 (2018).
[Crossref]

M. Cavillon, C. Kucera, T. W. Hawkins, N. Yu, P. D. Dragic, and J. Ballato, “Ytterbium-doped multicomponent fluorosilicate optical fibers with intrinsically low optical nonlinearities,” Opt. Mater. Express 8, 744–760 (2018).
[Crossref]

N. Yu, M. Cavillon, C. Kucera, T. W. Hawkins, J. Ballato, and P. D. Dragic, “Less than 1% quantum defect fiber lasers via ytterbium-doped multicomponent fluorosilicate optical fiber,” Opt. Lett. 43, 3096–3099 (2018).
[Crossref]

M. Cavillon, C. Kucera, T. W. Hawkins, J. Dawson, P. D. Dragic, and J. Ballato, “A unified materials approach to mitigating optical nonlinearities in optical fiber. III. Canonical examples and materials road map,” Int. J. Appl. Glass Sci. 9, 447–470 (2018).
[Crossref]

P. D. Dragic, M. Cavillon, and J. Ballato, “Materials for optical fiber lasers: a review,” Appl. Phys. Rev. 5, 041301 (2018).
[Crossref]

J. Ballato, M. Cavillon, and P. D. Dragic, “A unified materials approach to mitigating optical nonlinearities in optical fiber. I. Thermodynamics of optical scattering,” Int. J. Appl. Glass Sci. 9, 263–277 (2018).
[Crossref]

P. D. Dragic, M. Cavillon, and J. Ballato, “On the thermo-optic coefficient of P2O5 in SiO2,” Opt. Mater. Express 7, 3654–3661 (2017).
[Crossref]

M. Cavillon, J. Furtick, C. Kucera, C. Ryan, M. Tuggle, M. Jones, T. W. Hawkins, P. D. Dragic, and J. Ballato, “Brillouin properties of a novel strontium aluminosilicate glass optical fiber,” J. Lightwave Technol. 34, 1435–1441 (2016).
[Crossref]

P. D. Dragic, J. Ballato, S. Morris, and T. W. Hawkins, “Pockels’ coefficients of alumina in aluminosilicate optical fiber,” J. Opt. Soc. Am. B 30, 244–250 (2013).
[Crossref]

P. D. Dragic, J. Ballato, S. Morris, and T. W. Hawkins, “The Brillouin gain coefficient of Yb-doped aluminosilicate glass optical fibers,” Opt. Mater. 35, 1627–1632 (2013).
[Crossref]

P.-C. Law, A. Croteau, and P. D. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: the strain-optic and strain-acoustic coefficients,” Opt. Mater. Express 2, 391–404 (2012).
[Crossref]

P.-C. Law, Y.-S. Liu, A. Croteau, and P. D. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: acoustic velocity, acoustic attenuation, and thermo-acoustic coefficient,” Opt. Mater. Express 1, 686–699 (2011).
[Crossref]

P. D. Dragic, “Brillouin gain reduction via B2O3 doping,” J. Lightwave Technol. 29, 967–973 (2011).
[Crossref]

Edahiro, T.

N. Shibata and T. Edahiro, “Refractive-index dispersion for GeO2-, P2O5-, and B2O3-doped silica glasses in optical fibers,” Trans. IECE Jpn. E 65, 166–172 (1982).

Engholm, M.

Feldman, R.

Ferrari, M.

A. V. Anan’ev, V. N. Bogdanov, B. Champagnon, M. Ferrari, G. O. Karapetyan, L. V. Maksimov, S. N. Smerdin, and V. A. Solovyev, “Origin of Rayleigh scattering and anomaly of elastic properties in vitreous and molten GeO2,” J. Non-Cryst. Solids 354, 3049–3058 (2008).
[Crossref]

Fleming, J. W.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[Crossref]

Flores, A.

B. Anderson, K. MacDonald, A. Taliaferro, and A. Flores, “SBS suppression techniques in high-power, narrow-linewidth fiber amplifiers,” Proc. SPIE 11665, 116650G (2021).
[Crossref]

A. Flores, C. Robin, A. Lanari, and I. Dajani, “Pseudo-random binary sequence phase modulation for narrow linewidth, kilowatt, monolithic fiber amplifiers,” Opt. Express 22, 17735–17744 (2014).
[Crossref]

Fu, L.

Furtick, J.

Glick, Y.

Gu, G.

L. Dong, F. Kong, G. Gu, T. W. Hawkins, M. Jones, J. Parsons, M. Kalichevsky-Dong, K. Saitoh, B. Pulford, and I. Dajani, “Large-mode-area all-solid photonic bandgap fibers for the mitigation of optical nonlinearities,” IEEE J. Sel. Top. Quantum Electron. 22, 316–322 (2016).
[Crossref]

Gu, S.

Gur’Yanov, A. N.

M. M. Bubnov, V. N. Vechkanov, A. N. Gur’Yanov, K. V. Zotov, D. S. Lipatov, M. E. Likhachev, and M. V. Yashkov, “Fabrication and optical properties of fibers with an Al2O3-P2O5-SiO2 glass core,” Inorg. Mater. 45, 444–449 (2009).
[Crossref]

Guryanov, A. N.

M. A. Melkumov, A. Y. Laptev, M. V. Yashkov, N. N. Vechkanov, A. N. Guryanov, and I. A. Bufetov, “Effects of Yb3+ and Er3+ concentrations and doping procedure on excitation transfer efficiency in Er-Yb doped phosphosilicate fibers,” Inorg. Mater. 46, 299–303 (2010).
[Crossref]

Han, J.

Hawkins, T. W.

J. Ballato, T. W. Hawkins, N. Yu, and P. D. Dragic, “Materials for TMI mitigation,” Proc. SPIE 11665, 1166520 (2021).
[Crossref]

G. Pan, N. Yu, B. Meehan, T. W. Hawkins, J. Ballato, and P. D. Dragic, “Thermo-optic coefficient of B2O3 and GeO2 co-doped silica fibers,” Opt. Mater. Express 10, 1509–1521 (2020).
[Crossref]

N. Yu, T. W. Hawkins, T. V. Bui, M. Cavillon, J. Ballato, and P. D. Dragic, “AlPO4 in silica glass optical fibers: deduction of additional material properties,” IEEE Photon. J. 11, 7103913 (2019).
[Crossref]

N. Yu, M. Cavillon, C. Kucera, T. W. Hawkins, J. Ballato, and P. D. Dragic, “Less than 1% quantum defect fiber lasers via ytterbium-doped multicomponent fluorosilicate optical fiber,” Opt. Lett. 43, 3096–3099 (2018).
[Crossref]

M. Cavillon, C. Kucera, T. W. Hawkins, N. Yu, P. D. Dragic, and J. Ballato, “Ytterbium-doped multicomponent fluorosilicate optical fibers with intrinsically low optical nonlinearities,” Opt. Mater. Express 8, 744–760 (2018).
[Crossref]

M. Cavillon, C. Kucera, T. W. Hawkins, J. Dawson, P. D. Dragic, and J. Ballato, “A unified materials approach to mitigating optical nonlinearities in optical fiber. III. Canonical examples and materials road map,” Int. J. Appl. Glass Sci. 9, 447–470 (2018).
[Crossref]

L. Dong, F. Kong, G. Gu, T. W. Hawkins, M. Jones, J. Parsons, M. Kalichevsky-Dong, K. Saitoh, B. Pulford, and I. Dajani, “Large-mode-area all-solid photonic bandgap fibers for the mitigation of optical nonlinearities,” IEEE J. Sel. Top. Quantum Electron. 22, 316–322 (2016).
[Crossref]

M. Cavillon, J. Furtick, C. Kucera, C. Ryan, M. Tuggle, M. Jones, T. W. Hawkins, P. D. Dragic, and J. Ballato, “Brillouin properties of a novel strontium aluminosilicate glass optical fiber,” J. Lightwave Technol. 34, 1435–1441 (2016).
[Crossref]

P. D. Dragic, J. Ballato, S. Morris, and T. W. Hawkins, “The Brillouin gain coefficient of Yb-doped aluminosilicate glass optical fibers,” Opt. Mater. 35, 1627–1632 (2013).
[Crossref]

P. D. Dragic, J. Ballato, S. Morris, and T. W. Hawkins, “Pockels’ coefficients of alumina in aluminosilicate optical fiber,” J. Opt. Soc. Am. B 30, 244–250 (2013).
[Crossref]

T. W. Hawkins, “The materials science and engineering of advanced Yb-doped glasses and fibers for high-power lasers,” Ph.D. dissertation (Clemson University, 2020).

He, B.

M. Liu, Y. Yang, H. Shen, J. Zhang, X. Zou, H. Wang, L. Yuan, Y. You, G. Bai, B. He, and J. Zhou, “1.27 kW, 2.2 GHz pseudo-random binary sequence phase modulated fiber amplifier with Brillouin gain-spectrum overlap,” Sci. Rep. 10, 629 (2020).
[Crossref]

Heebner, J. E.

Horvitz, Z.

Jaeger, R. E.

S. H. Wemple, D. A. Pinnow, T. C. Rich, R. E. Jaeger, and L. G. van Uitert, “Binary SiO2–B2O3 glass system: refractive index behavior and energy gap considerations,” J. Appl. Phys. 44, 5432–5437 (1973).
[Crossref]

Jasapara, J.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[Crossref]

Jauregui, C.

Jia, H.

Jones, M.

L. Dong, F. Kong, G. Gu, T. W. Hawkins, M. Jones, J. Parsons, M. Kalichevsky-Dong, K. Saitoh, B. Pulford, and I. Dajani, “Large-mode-area all-solid photonic bandgap fibers for the mitigation of optical nonlinearities,” IEEE J. Sel. Top. Quantum Electron. 22, 316–322 (2016).
[Crossref]

M. Cavillon, J. Furtick, C. Kucera, C. Ryan, M. Tuggle, M. Jones, T. W. Hawkins, P. D. Dragic, and J. Ballato, “Brillouin properties of a novel strontium aluminosilicate glass optical fiber,” J. Lightwave Technol. 34, 1435–1441 (2016).
[Crossref]

Jun, C.

C. Jun, M. Jung, W. Shin, B. Yu, Y. S. Yoon, Y. Park, and K. Choi, “818 W Yb-doped amplifier with <7 GHz linewidth based on pseudo-random phase modulation in polarization-maintained all-fiber configuration,” Laser Phys. Lett. 16, 015102 (2018).
[Crossref]

Jung, M.

C. Jun, M. Jung, W. Shin, B. Yu, Y. S. Yoon, Y. Park, and K. Choi, “818 W Yb-doped amplifier with <7 GHz linewidth based on pseudo-random phase modulation in polarization-maintained all-fiber configuration,” Laser Phys. Lett. 16, 015102 (2018).
[Crossref]

Kalichevsky-Dong, M.

L. Dong, F. Kong, G. Gu, T. W. Hawkins, M. Jones, J. Parsons, M. Kalichevsky-Dong, K. Saitoh, B. Pulford, and I. Dajani, “Large-mode-area all-solid photonic bandgap fibers for the mitigation of optical nonlinearities,” IEEE J. Sel. Top. Quantum Electron. 22, 316–322 (2016).
[Crossref]

Karapetyan, G. O.

A. V. Anan’ev, V. N. Bogdanov, B. Champagnon, M. Ferrari, G. O. Karapetyan, L. V. Maksimov, S. N. Smerdin, and V. A. Solovyev, “Origin of Rayleigh scattering and anomaly of elastic properties in vitreous and molten GeO2,” J. Non-Cryst. Solids 354, 3049–3058 (2008).
[Crossref]

Knall, J.

Kometani, T. Y.

D. J. DiGiovanni, J. B. MacChesney, and T. Y. Kometani, “Structure and properties of silica containing aluminum and phosphorus near the AlPO4 join,” J. Non-Cryst. Solids 113, 58–64 (1989).
[Crossref]

Kong, F.

L. Dong, F. Kong, G. Gu, T. W. Hawkins, M. Jones, J. Parsons, M. Kalichevsky-Dong, K. Saitoh, B. Pulford, and I. Dajani, “Large-mode-area all-solid photonic bandgap fibers for the mitigation of optical nonlinearities,” IEEE J. Sel. Top. Quantum Electron. 22, 316–322 (2016).
[Crossref]

Kucera, C.

Lanari, A.

Laptev, A. Y.

M. A. Melkumov, A. Y. Laptev, M. V. Yashkov, N. N. Vechkanov, A. N. Guryanov, and I. A. Bufetov, “Effects of Yb3+ and Er3+ concentrations and doping procedure on excitation transfer efficiency in Er-Yb doped phosphosilicate fibers,” Inorg. Mater. 46, 299–303 (2010).
[Crossref]

Law, P.-C.

Likhachev, M. E.

M. M. Bubnov, V. N. Vechkanov, A. N. Gur’Yanov, K. V. Zotov, D. S. Lipatov, M. E. Likhachev, and M. V. Yashkov, “Fabrication and optical properties of fibers with an Al2O3-P2O5-SiO2 glass core,” Inorg. Mater. 45, 444–449 (2009).
[Crossref]

Limpert, J.

Lines, M. E.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[Crossref]

Lipatov, D. S.

M. M. Bubnov, V. N. Vechkanov, A. N. Gur’Yanov, K. V. Zotov, D. S. Lipatov, M. E. Likhachev, and M. V. Yashkov, “Fabrication and optical properties of fibers with an Al2O3-P2O5-SiO2 glass core,” Inorg. Mater. 45, 444–449 (2009).
[Crossref]

Liu, M.

M. Liu, Y. Yang, H. Shen, J. Zhang, X. Zou, H. Wang, L. Yuan, Y. You, G. Bai, B. He, and J. Zhou, “1.27 kW, 2.2 GHz pseudo-random binary sequence phase modulated fiber amplifier with Brillouin gain-spectrum overlap,” Sci. Rep. 10, 629 (2020).
[Crossref]

Liu, Y.-S.

Lou, S.

MacChesney, J. B.

D. J. DiGiovanni, J. B. MacChesney, and T. Y. Kometani, “Structure and properties of silica containing aluminum and phosphorus near the AlPO4 join,” J. Non-Cryst. Solids 113, 58–64 (1989).
[Crossref]

MacDonald, K.

B. Anderson, K. MacDonald, A. Taliaferro, and A. Flores, “SBS suppression techniques in high-power, narrow-linewidth fiber amplifiers,” Proc. SPIE 11665, 116650G (2021).
[Crossref]

Maksimov, L. V.

A. V. Anan’ev, V. N. Bogdanov, B. Champagnon, M. Ferrari, G. O. Karapetyan, L. V. Maksimov, S. N. Smerdin, and V. A. Solovyev, “Origin of Rayleigh scattering and anomaly of elastic properties in vitreous and molten GeO2,” J. Non-Cryst. Solids 354, 3049–3058 (2008).
[Crossref]

Mangan, B.

McKay, H. A.

Meehan, B.

Melkumov, M. A.

M. A. Melkumov, A. Y. Laptev, M. V. Yashkov, N. N. Vechkanov, A. N. Guryanov, and I. A. Bufetov, “Effects of Yb3+ and Er3+ concentrations and doping procedure on excitation transfer efficiency in Er-Yb doped phosphosilicate fibers,” Inorg. Mater. 46, 299–303 (2010).
[Crossref]

Messerly, M. J.

Monberg, E. M.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[Crossref]

Morris, S.

P. D. Dragic, J. Ballato, S. Morris, and T. W. Hawkins, “Pockels’ coefficients of alumina in aluminosilicate optical fiber,” J. Opt. Soc. Am. B 30, 244–250 (2013).
[Crossref]

P. D. Dragic, J. Ballato, S. Morris, and T. W. Hawkins, “The Brillouin gain coefficient of Yb-doped aluminosilicate glass optical fibers,” Opt. Mater. 35, 1627–1632 (2013).
[Crossref]

Nicholson, J. W.

Nilsson, J.

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B. 27, B63–B92 (2010).
[Crossref]

Pan, G.

Park, Y.

C. Jun, M. Jung, W. Shin, B. Yu, Y. S. Yoon, Y. Park, and K. Choi, “818 W Yb-doped amplifier with <7 GHz linewidth based on pseudo-random phase modulation in polarization-maintained all-fiber configuration,” Laser Phys. Lett. 16, 015102 (2018).
[Crossref]

Parsons, J.

L. Dong, F. Kong, G. Gu, T. W. Hawkins, M. Jones, J. Parsons, M. Kalichevsky-Dong, K. Saitoh, B. Pulford, and I. Dajani, “Large-mode-area all-solid photonic bandgap fibers for the mitigation of optical nonlinearities,” IEEE J. Sel. Top. Quantum Electron. 22, 316–322 (2016).
[Crossref]

Pax, P. H.

Peacock, A. C.

J. Ballato and A. C. Peacock, “Perspective: molten core optical fiber fabrication—A route to new materials and applications,” APL Photon. 3, 120903 (2018).
[Crossref]

Pearl, S.

Peng, X.

Pinnow, D. A.

S. H. Wemple, D. A. Pinnow, T. C. Rich, R. E. Jaeger, and L. G. van Uitert, “Binary SiO2–B2O3 glass system: refractive index behavior and energy gap considerations,” J. Appl. Phys. 44, 5432–5437 (1973).
[Crossref]

Puc, G.

Pulford, B.

L. Dong, F. Kong, G. Gu, T. W. Hawkins, M. Jones, J. Parsons, M. Kalichevsky-Dong, K. Saitoh, B. Pulford, and I. Dajani, “Large-mode-area all-solid photonic bandgap fibers for the mitigation of optical nonlinearities,” IEEE J. Sel. Top. Quantum Electron. 22, 316–322 (2016).
[Crossref]

Quiquempois, Y.

Reed, W. A.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[Crossref]

Rich, T. C.

S. H. Wemple, D. A. Pinnow, T. C. Rich, R. E. Jaeger, and L. G. van Uitert, “Binary SiO2–B2O3 glass system: refractive index behavior and energy gap considerations,” J. Appl. Phys. 44, 5432–5437 (1973).
[Crossref]

Richardson, D. J.

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B. 27, B63–B92 (2010).
[Crossref]

Robin, C.

Ryan, C.

Saitoh, K.

L. Dong, F. Kong, G. Gu, T. W. Hawkins, M. Jones, J. Parsons, M. Kalichevsky-Dong, K. Saitoh, B. Pulford, and I. Dajani, “Large-mode-area all-solid photonic bandgap fibers for the mitigation of optical nonlinearities,” IEEE J. Sel. Top. Quantum Electron. 22, 316–322 (2016).
[Crossref]

Shafir, N.

Shamir, Y.

Shen, H.

M. Liu, Y. Yang, H. Shen, J. Zhang, X. Zou, H. Wang, L. Yuan, Y. You, G. Bai, B. He, and J. Zhou, “1.27 kW, 2.2 GHz pseudo-random binary sequence phase modulated fiber amplifier with Brillouin gain-spectrum overlap,” Sci. Rep. 10, 629 (2020).
[Crossref]

Shibata, N.

N. Shibata and T. Edahiro, “Refractive-index dispersion for GeO2-, P2O5-, and B2O3-doped silica glasses in optical fibers,” Trans. IECE Jpn. E 65, 166–172 (1982).

Shin, W.

C. Jun, M. Jung, W. Shin, B. Yu, Y. S. Yoon, Y. Park, and K. Choi, “818 W Yb-doped amplifier with <7 GHz linewidth based on pseudo-random phase modulation in polarization-maintained all-fiber configuration,” Laser Phys. Lett. 16, 015102 (2018).
[Crossref]

Shverdin, M. Y.

Siders, C. W.

Sintov, Y.

Smerdin, S. N.

A. V. Anan’ev, V. N. Bogdanov, B. Champagnon, M. Ferrari, G. O. Karapetyan, L. V. Maksimov, S. N. Smerdin, and V. A. Solovyev, “Origin of Rayleigh scattering and anomaly of elastic properties in vitreous and molten GeO2,” J. Non-Cryst. Solids 354, 3049–3058 (2008).
[Crossref]

Smith, A.

Smith, J.

Solovyev, V. A.

A. V. Anan’ev, V. N. Bogdanov, B. Champagnon, M. Ferrari, G. O. Karapetyan, L. V. Maksimov, S. N. Smerdin, and V. A. Solovyev, “Origin of Rayleigh scattering and anomaly of elastic properties in vitreous and molten GeO2,” J. Non-Cryst. Solids 354, 3049–3058 (2008).
[Crossref]

Sridharan, A. K.

Stappaerts, E. A.

Stephen, M. A.

Stihler, C.

Suzuki, S.

Taliaferro, A.

B. Anderson, K. MacDonald, A. Taliaferro, and A. Flores, “SBS suppression techniques in high-power, narrow-linewidth fiber amplifiers,” Proc. SPIE 11665, 116650G (2021).
[Crossref]

Tang, Z.

Tuggle, M.

van Uitert, L. G.

S. H. Wemple, D. A. Pinnow, T. C. Rich, R. E. Jaeger, and L. G. van Uitert, “Binary SiO2–B2O3 glass system: refractive index behavior and energy gap considerations,” J. Appl. Phys. 44, 5432–5437 (1973).
[Crossref]

Vanvincq, O.

Vechkanov, N. N.

M. A. Melkumov, A. Y. Laptev, M. V. Yashkov, N. N. Vechkanov, A. N. Guryanov, and I. A. Bufetov, “Effects of Yb3+ and Er3+ concentrations and doping procedure on excitation transfer efficiency in Er-Yb doped phosphosilicate fibers,” Inorg. Mater. 46, 299–303 (2010).
[Crossref]

Vechkanov, V. N.

M. M. Bubnov, V. N. Vechkanov, A. N. Gur’Yanov, K. V. Zotov, D. S. Lipatov, M. E. Likhachev, and M. V. Yashkov, “Fabrication and optical properties of fibers with an Al2O3-P2O5-SiO2 glass core,” Inorg. Mater. 45, 444–449 (2009).
[Crossref]

Wang, H.

M. Liu, Y. Yang, H. Shen, J. Zhang, X. Zou, H. Wang, L. Yuan, Y. You, G. Bai, B. He, and J. Zhou, “1.27 kW, 2.2 GHz pseudo-random binary sequence phase modulated fiber amplifier with Brillouin gain-spectrum overlap,” Sci. Rep. 10, 629 (2020).
[Crossref]

Wang, X.

Wemple, S. H.

S. H. Wemple, D. A. Pinnow, T. C. Rich, R. E. Jaeger, and L. G. van Uitert, “Binary SiO2–B2O3 glass system: refractive index behavior and energy gap considerations,” J. Appl. Phys. 44, 5432–5437 (1973).
[Crossref]

Wisk, P.

J. W. Nicholson, A. DeSantolo, M. F. Yan, P. Wisk, B. Mangan, G. Puc, A. W. Yu, and M. A. Stephen, “High energy, 1572.3 nm pulses for CO2 LIDAR from a polarization-maintaining, very-large-mode-area, Er-doped fiber amplifier,” Opt. Express 24, 19961–19968 (2016).
[Crossref]

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[Crossref]

Yablon, A. D.

A. D. Yablon, “Multi-wavelength optical fiber refractive index profiling by spatially resolved Fourier transform spectroscopy,” J. Lightwave Technol. 28, 360–364 (2010).
[Crossref]

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[Crossref]

Yan, M. F.

J. W. Nicholson, A. DeSantolo, M. F. Yan, P. Wisk, B. Mangan, G. Puc, A. W. Yu, and M. A. Stephen, “High energy, 1572.3 nm pulses for CO2 LIDAR from a polarization-maintaining, very-large-mode-area, Er-doped fiber amplifier,” Opt. Express 24, 19961–19968 (2016).
[Crossref]

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[Crossref]

Yang, Y.

M. Liu, Y. Yang, H. Shen, J. Zhang, X. Zou, H. Wang, L. Yuan, Y. You, G. Bai, B. He, and J. Zhou, “1.27 kW, 2.2 GHz pseudo-random binary sequence phase modulated fiber amplifier with Brillouin gain-spectrum overlap,” Sci. Rep. 10, 629 (2020).
[Crossref]

Yashkov, M. V.

M. A. Melkumov, A. Y. Laptev, M. V. Yashkov, N. N. Vechkanov, A. N. Guryanov, and I. A. Bufetov, “Effects of Yb3+ and Er3+ concentrations and doping procedure on excitation transfer efficiency in Er-Yb doped phosphosilicate fibers,” Inorg. Mater. 46, 299–303 (2010).
[Crossref]

M. M. Bubnov, V. N. Vechkanov, A. N. Gur’Yanov, K. V. Zotov, D. S. Lipatov, M. E. Likhachev, and M. V. Yashkov, “Fabrication and optical properties of fibers with an Al2O3-P2O5-SiO2 glass core,” Inorg. Mater. 45, 444–449 (2009).
[Crossref]

Yehouessi, J.-P.

Yoon, Y. S.

C. Jun, M. Jung, W. Shin, B. Yu, Y. S. Yoon, Y. Park, and K. Choi, “818 W Yb-doped amplifier with <7 GHz linewidth based on pseudo-random phase modulation in polarization-maintained all-fiber configuration,” Laser Phys. Lett. 16, 015102 (2018).
[Crossref]

You, Y.

M. Liu, Y. Yang, H. Shen, J. Zhang, X. Zou, H. Wang, L. Yuan, Y. You, G. Bai, B. He, and J. Zhou, “1.27 kW, 2.2 GHz pseudo-random binary sequence phase modulated fiber amplifier with Brillouin gain-spectrum overlap,” Sci. Rep. 10, 629 (2020).
[Crossref]

Yu, A. W.

Yu, B.

C. Jun, M. Jung, W. Shin, B. Yu, Y. S. Yoon, Y. Park, and K. Choi, “818 W Yb-doped amplifier with <7 GHz linewidth based on pseudo-random phase modulation in polarization-maintained all-fiber configuration,” Laser Phys. Lett. 16, 015102 (2018).
[Crossref]

Yu, N.

Yuan, L.

M. Liu, Y. Yang, H. Shen, J. Zhang, X. Zou, H. Wang, L. Yuan, Y. You, G. Bai, B. He, and J. Zhou, “1.27 kW, 2.2 GHz pseudo-random binary sequence phase modulated fiber amplifier with Brillouin gain-spectrum overlap,” Sci. Rep. 10, 629 (2020).
[Crossref]

Zervas, M. N.

M. N. Zervas, “Transverse mode instability, thermal lensing and power scaling in Yb3+-doped high-power fiber amplifiers,” Opt. Express 27, 19019–19041 (2019).
[Crossref]

M. N. Zervas and C. A. Codemard, “High power fiber lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 20, 219–241 (2014).
[Crossref]

Zhang, J.

M. Liu, Y. Yang, H. Shen, J. Zhang, X. Zou, H. Wang, L. Yuan, Y. You, G. Bai, B. He, and J. Zhou, “1.27 kW, 2.2 GHz pseudo-random binary sequence phase modulated fiber amplifier with Brillouin gain-spectrum overlap,” Sci. Rep. 10, 629 (2020).
[Crossref]

Zhen, X.

Zhou, J.

M. Liu, Y. Yang, H. Shen, J. Zhang, X. Zou, H. Wang, L. Yuan, Y. You, G. Bai, B. He, and J. Zhou, “1.27 kW, 2.2 GHz pseudo-random binary sequence phase modulated fiber amplifier with Brillouin gain-spectrum overlap,” Sci. Rep. 10, 629 (2020).
[Crossref]

Zotov, K. V.

M. M. Bubnov, V. N. Vechkanov, A. N. Gur’Yanov, K. V. Zotov, D. S. Lipatov, M. E. Likhachev, and M. V. Yashkov, “Fabrication and optical properties of fibers with an Al2O3-P2O5-SiO2 glass core,” Inorg. Mater. 45, 444–449 (2009).
[Crossref]

Zou, X.

M. Liu, Y. Yang, H. Shen, J. Zhang, X. Zou, H. Wang, L. Yuan, Y. You, G. Bai, B. He, and J. Zhou, “1.27 kW, 2.2 GHz pseudo-random binary sequence phase modulated fiber amplifier with Brillouin gain-spectrum overlap,” Sci. Rep. 10, 629 (2020).
[Crossref]

Zuitlin, R.

Adv. Opt. Photon. (1)

APL Photon. (1)

J. Ballato and A. C. Peacock, “Perspective: molten core optical fiber fabrication—A route to new materials and applications,” APL Photon. 3, 120903 (2018).
[Crossref]

Appl. Phys. Lett. (1)

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[Crossref]

Appl. Phys. Rev. (1)

P. D. Dragic, M. Cavillon, and J. Ballato, “Materials for optical fiber lasers: a review,” Appl. Phys. Rev. 5, 041301 (2018).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

M. N. Zervas and C. A. Codemard, “High power fiber lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 20, 219–241 (2014).
[Crossref]

L. Dong, F. Kong, G. Gu, T. W. Hawkins, M. Jones, J. Parsons, M. Kalichevsky-Dong, K. Saitoh, B. Pulford, and I. Dajani, “Large-mode-area all-solid photonic bandgap fibers for the mitigation of optical nonlinearities,” IEEE J. Sel. Top. Quantum Electron. 22, 316–322 (2016).
[Crossref]

IEEE Photon. J. (1)

N. Yu, T. W. Hawkins, T. V. Bui, M. Cavillon, J. Ballato, and P. D. Dragic, “AlPO4 in silica glass optical fibers: deduction of additional material properties,” IEEE Photon. J. 11, 7103913 (2019).
[Crossref]

Inorg. Mater. (2)

M. A. Melkumov, A. Y. Laptev, M. V. Yashkov, N. N. Vechkanov, A. N. Guryanov, and I. A. Bufetov, “Effects of Yb3+ and Er3+ concentrations and doping procedure on excitation transfer efficiency in Er-Yb doped phosphosilicate fibers,” Inorg. Mater. 46, 299–303 (2010).
[Crossref]

M. M. Bubnov, V. N. Vechkanov, A. N. Gur’Yanov, K. V. Zotov, D. S. Lipatov, M. E. Likhachev, and M. V. Yashkov, “Fabrication and optical properties of fibers with an Al2O3-P2O5-SiO2 glass core,” Inorg. Mater. 45, 444–449 (2009).
[Crossref]

Int. J. Appl. Glass Sci. (5)

P. D. Dragic, M. Cavillon, A. Ballato, and J. Ballato, “A unified materials approach to mitigating optical nonlinearities in optical fiber. II. A. Material additivity models and basic glass properties,” Int. J. Appl. Glass Sci. 9, 278–287 (2018).
[Crossref]

P. D. Dragic, M. Cavillon, A. Ballato, and J. Ballato, “A unified materials approach to mitigating optical nonlinearities in optical fiber. II. B. The optical fiber, material additivity and the nonlinear coefficients,” Int. J. Appl. Glass Sci. 9, 307–318 (2018).
[Crossref]

J. Ballato, M. Cavillon, and P. D. Dragic, “A unified materials approach to mitigating optical nonlinearities in optical fiber. I. Thermodynamics of optical scattering,” Int. J. Appl. Glass Sci. 9, 263–277 (2018).
[Crossref]

M. Cavillon, C. Kucera, T. W. Hawkins, J. Dawson, P. D. Dragic, and J. Ballato, “A unified materials approach to mitigating optical nonlinearities in optical fiber. III. Canonical examples and materials road map,” Int. J. Appl. Glass Sci. 9, 447–470 (2018).
[Crossref]

J. Ballato and P. D. Dragic, “Glass: the carrier of light—Part II—A brief look into the future of optical fiber,” Int. J. Appl. Glass Sci. 12, 3–24 (2021).
[Crossref]

J. Appl. Phys. (1)

S. H. Wemple, D. A. Pinnow, T. C. Rich, R. E. Jaeger, and L. G. van Uitert, “Binary SiO2–B2O3 glass system: refractive index behavior and energy gap considerations,” J. Appl. Phys. 44, 5432–5437 (1973).
[Crossref]

J. Lightwave Technol. (4)

J. Non-Cryst. Solids (2)

A. V. Anan’ev, V. N. Bogdanov, B. Champagnon, M. Ferrari, G. O. Karapetyan, L. V. Maksimov, S. N. Smerdin, and V. A. Solovyev, “Origin of Rayleigh scattering and anomaly of elastic properties in vitreous and molten GeO2,” J. Non-Cryst. Solids 354, 3049–3058 (2008).
[Crossref]

D. J. DiGiovanni, J. B. MacChesney, and T. Y. Kometani, “Structure and properties of silica containing aluminum and phosphorus near the AlPO4 join,” J. Non-Cryst. Solids 113, 58–64 (1989).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Opt. Soc. Am. B. (1)

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B. 27, B63–B92 (2010).
[Crossref]

Laser Phys. Lett. (1)

C. Jun, M. Jung, W. Shin, B. Yu, Y. S. Yoon, Y. Park, and K. Choi, “818 W Yb-doped amplifier with <7 GHz linewidth based on pseudo-random phase modulation in polarization-maintained all-fiber configuration,” Laser Phys. Lett. 16, 015102 (2018).
[Crossref]

Opt. Express (7)

Opt. Lett. (4)

Opt. Mater. (1)

P. D. Dragic, J. Ballato, S. Morris, and T. W. Hawkins, “The Brillouin gain coefficient of Yb-doped aluminosilicate glass optical fibers,” Opt. Mater. 35, 1627–1632 (2013).
[Crossref]

Opt. Mater. Express (5)

Proc. SPIE (2)

J. Ballato, T. W. Hawkins, N. Yu, and P. D. Dragic, “Materials for TMI mitigation,” Proc. SPIE 11665, 1166520 (2021).
[Crossref]

B. Anderson, K. MacDonald, A. Taliaferro, and A. Flores, “SBS suppression techniques in high-power, narrow-linewidth fiber amplifiers,” Proc. SPIE 11665, 116650G (2021).
[Crossref]

Sci. Rep. (1)

M. Liu, Y. Yang, H. Shen, J. Zhang, X. Zou, H. Wang, L. Yuan, Y. You, G. Bai, B. He, and J. Zhou, “1.27 kW, 2.2 GHz pseudo-random binary sequence phase modulated fiber amplifier with Brillouin gain-spectrum overlap,” Sci. Rep. 10, 629 (2020).
[Crossref]

Trans. IECE Jpn. E (1)

N. Shibata and T. Edahiro, “Refractive-index dispersion for GeO2-, P2O5-, and B2O3-doped silica glasses in optical fibers,” Trans. IECE Jpn. E 65, 166–172 (1982).

Other (4)

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).

T. W. Hawkins, “The materials science and engineering of advanced Yb-doped glasses and fibers for high-power lasers,” Ph.D. dissertation (Clemson University, 2020).

http://www.interfiberanalysis.com .

https://www.rp-photonics.com/fiberpower.html .

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Design curves for (a) refractive index difference, relative to the pure ${\rm{Si}}{{\rm{O}}_2}$ cladding; (b) thermo-optic (dn/dT) coefficient; and (c) Brillouin gain coefficient, all as functions of ${{\rm{B}}_2}{{\rm{O}}_3}$ (abscissa) and ${{\rm{P}}_2}{{\rm{O}}_5}$ concentration. The subfigures magnify the (c1) low- and (c2) high-concentration ${{\rm{B}}_2}{{\rm{O}}_3}$ regions of (c). Each line represents 1 mol. % difference in ${{\rm{P}}_2}{{\rm{O}}_5}$ concentration with arrow direction indicating an increasing value from 0 to 12 mol. % as noted. Each curve also includes a doping level of 0.25 mol. % ${\rm{Y}}{{\rm{b}}_2}{{\rm{O}}_3}$ and 1.5 mol. % of ${\rm{AlP}}{{\rm{O}}_4}$.
Fig. 2.
Fig. 2. Experimental setup for the kilowatt all-fiber amplifier utilized to investigate power scaling and nonlinear thresholds of the P2 fiber.
Fig. 3.
Fig. 3. (a) Emission and absorption cross sections. (b) Lifetime measurement. The long lifetime (1.48 ms) reduced cross sections, and the general shape of the spectra results from the excess ${{\rm{P}}_2}{{\rm{O}}_5}$ in the fiber left over following the formation of ${\rm{AlP}}{{\rm{O}}_4}$. The lifetime data is very much single exponential.
Fig. 4.
Fig. 4. Refractive index profiles (RIPs) in cross section and fiber center line scan for (a) and (b) fiber P1, respectively, and (c) and (d) for fiber P2, respectively.
Fig. 5.
Fig. 5. Change in free spectral range (FSR) for a ring fiber laser as a function of temperature. The slope is proportional to the thermo-optic coefficient $dn/dT$.
Fig. 6.
Fig. 6. Brillouin spectra taken from Fiber P2 and a sample of Nufern YDF-15/130 fiber at a wavelength of 1534 nm. The small peak near 11 GHz is an artifact of the apparatus. The commercial fiber is well described as possessing a single Lorentzian BGS. The P2 fiber, on the other hand, is broader and has overlapping peaks due to the presence of higher-order acoustic modes. Although in aggregate they are spread over about 200 MHz, the linewidth of each individual peak (${\sim}{{90}}\;{\rm{MHz}}$) is roughly twice that of the commercial fiber (${\sim}{{47}}\;{\rm{MHz}}$).
Fig. 7.
Fig. 7. Photodarkening (PD) loss as a function of time for the intrinsically low-nonlinearity P2 fiber described herein compared to a low-PD fluorine-doped aluminosilicate fiber containing cerium (Ce).
Fig. 8.
Fig. 8. Output power (left axis, blue circles) and reflectivity (right axis, black squares) as a function of launched pump power for P2 fiber amplifier at 10 GHz. An output power of 1.1 kW with optical efficiency ${\gt}{{70}}\%$ was achieved without the onset of SBS.

Tables (3)

Tables Icon

Table 1. Additivity Formulae and Associated Material Parameters for Deduction of Relevant Fiber Properties

Tables Icon

Table 2. Selected Properties of the Low Thermo-Optic Fibers

Tables Icon

Table 3. SBS and TMI Threshold Power Levels and Spectral Width for Fiber P2

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

( d n / d T ) ρ c p ( λ s λ p 1 ) f ( Γ m l 1 ) ,
B G C = 2 π 2 n 7 p 12 2 c λ 2 ρ V a Δ ν B ,

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved