Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Theoretical study of self-starting gratings in photorefractive multiple-quantum-well structures

Not Accessible

Your library or personal account may give you access

Abstract

A model of wave mixing is developed for photorefractive multiple-quantum-well structures in quantum-confined Stark effect geometry. This optical model takes into account both absorption and index gratings and is based on the nonlocal character of the optical nonlinearity in the direction of the applied electric field. A coupling gain is defined that depends only on the imaginary part of the relative permittivity grating. It is shown that self-starting gratings can appear when a certain threshold condition on the coupling gain is verified, with this condition being similar to the threshold condition for double phase-conjugate mirror operation in bulk photorefractive materials. The possibility of obtaining with actual devices the relatively high optical nonlinearity necessary to reach the threshold is discussed. Double phase conjugation with multiple-quantum-well structures in a two-zone configuration is envisaged.

© 1996 Optical Society of America

Full Article  |  PDF Article
More Like This
Transient grating studies of excitonic optical nonlinearities in GaAs/AlGaAs multiple-quantum-well structures

A. Miller, R. J. Manning, P. K. Milsom, D. C. Hutchings, D. W. Crust, and K. Woodbridge
J. Opt. Soc. Am. B 6(4) 567-578 (1989)

Short-time photorefractive recording in multiple quantum wells: longitudinal geometry

María Aguilar, M. Carrascosa, F. Agulló-López, L. F. Magaña, and L. Solymar
J. Opt. Soc. Am. B 13(11) 2630-2635 (1996)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (59)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.