Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Structure of the electromagnetic field in a slab of photonic crystal

Not Accessible

Your library or personal account may give you access

Abstract

We simulate the s-polarized electromagnetic field diffracted by a truncated two-dimensional lattice. We observe strong decay of the transmittivity for frequencies lying in the gaps displayed by the dispersion relation of the infinite crystal and find regular oscillations outside these gaps. The structure of the field in the lattice is explained in terms of modes of its infinite counterpart. In particular, the oscillations are related to the resonance in the layer of propagating Bloch waves, just as in a Fabry–Perot interferometer. This interpretation enables us to retrieve the dispersion relation. Finally, we study the symmetry properties of the modes and show that for certain frequencies the transmissivity of the system is null under symmetric illumination but nonzero under antisymmetric lighting or vice versa.

© 1997 Optical Society of America

Full Article  |  PDF Article
More Like This
Electromagnetic surface modes of a dielectric superlattice: the supercell method

F. Ramos-Mendieta and P. Halevi
J. Opt. Soc. Am. B 14(2) 370-381 (1997)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (23)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.