Abstract
Conversion efficiencies and far-field profiles for third-order harmonic generation in an atomic medium irradiated by an intense Bessel–Gauss beam are calculated with an integral method. The calculation takes into account the nonperturbative variation of the atomic polarizabilities, target depletion by photoionization, and the effect of the free electrons. Numerical results are presented for a pump beam of 355-nm wavelength and up to intensity incident on hydrogen. They are compared with equivalent results for a pure Gaussian pump beam. Significant differences are found that originate from the different phase-matching properties and intensity profile of Bessel–Gauss beams.
© 1998 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Figures (8)
You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Tables (1)
You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Equations (61)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription