Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Resonance energy transfer in dye molecules adsorbed two dimensionally upon aqueous suspensions of polystyrene spheres

Not Accessible

Your library or personal account may give you access

Abstract

The time-resolved photoluminescence in Rhodamine B dye embedded in aqueous suspensions of polystyrene spheres shows an anomalous fast nonexponential decay in addition to the slow decay that is intrinsic to dye molecules. When the volume fraction of spheres is increased to a critical value, the relative intensity of the fast component increases while the decay rate remains constant at 15 ps. A further increase of the volume fraction lengthens the lifetime of this component to the order of 1 ns. The quantitative behavior of the time dependence of the luminescence is explained well when we consider that dye molecules are adsorbed two dimensionally upon spheres and that the fast decay originates in the resonance energy transfer between the dye molecules.

© 1999 Optical Society of America

Full Article  |  PDF Article
More Like This
Lifetime of fluorescent dye molecules in dense aqueous suspensions of polystyrene nanoparticles

Giuseppe Scalia and Frank Scheffold
Opt. Express 23(23) 29342-29352 (2015)

Fluorescence-lifetime measurements in monodispersed suspensions of polystyrene particles

B. Y. Tong, P. K. John, Yung-tang Zhu, Y. S. Liu, S. K. Wong, and W. R. Ware
J. Opt. Soc. Am. B 10(2) 356-359 (1993)

Polarized light-scattering measurements of dielectric spheres upon a silicon surface

Lipiin Sung, George W. Mulholland, and Thomas A. Germer
Opt. Lett. 24(13) 866-868 (1999)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved