Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Field variational analysis for modal gain in erbium-doped fiber amplifiers

Not Accessible

Your library or personal account may give you access

Abstract

We define a complex refractive-index profile for the pumped erbium-doped fiber that depends on radial distance, pump and signal powers, and erbium-doping profile to obtain a modal gain and loss of the propagating signal and pump power by Rayleigh–Ritz variational analysis. This profile provides a novel way of looking at the gain characteristics of erbium-doped fiber amplifiers. The advantage of this approach is that it gives the actual modal gain and also eliminates the need to approximate the modal fields and can easily take into account any dopant and index profile.

© 1999 Optical Society of America

Full Article  |  PDF Article
More Like This
Accurate modal gain control in a multimode erbium doped fiber amplifier incorporating ring doping and a simple LP01 pump configuration

Qiongyue Kang, Ee-Leong Lim, Yongmin Jung, Jayanta K. Sahu, Francesco Poletti, Catherine Baskiotis, Shaif-ul Alam, and David J. Richardson
Opt. Express 20(19) 20835-20843 (2012)

Demonstration of an erbium-doped fiber with annular doping for low gain compression in cladding-pumped amplifiers

C. Matte-Breton, H. Chen, N. K. Fontaine, R. Ryf, R.-J. Essiambre, C. Kelly, C. Jin, Y. Messaddeq, and Sophie LaRochelle
Opt. Express 26(20) 26633-26645 (2018)

Numerical and analytical modeling of polarization-dependent gain in erbium-doped fiber amplifiers

R. Leners and T. Georges
J. Opt. Soc. Am. B 12(10) 1942-1954 (1995)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (24)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved