Abstract
The operating points of pulsed dual-cavity doubly resonant optical parametric oscillators have been investigated, taking into account the influence of the optical dispersion. A diagram is proposed to determine the spectral separation of doubly resonant positions for any optical lengths of both cavities. From the analysis of the distribution of doubly resonant coincidences, original conditions for stable single-mode operation are specified. This approach is validated by use of a type II phase-matched β-barium borate crystal. Frequency stability and tuning characteristics are also reported. To our best knowledge, this is the first demonstration of single-mode operation that uses a dual-cavity doubly resonant optical parametric oscillator in the nanosecond pulsed regime.
© 2000 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Figures (16)
You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Tables (1)
You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Equations (59)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription