Abstract
We analyze nonlinear excitation in a four-level atomic system that exhibits electromagnetically induced transparency induced by a strong coupling laser. We show that, at the line center of the atomic transition, the nondegenerate two-photon excitation in the dressed states can be enhanced by constructive quantum interference in two excitation paths while the linear absorption is inhibited by destructive quantum interference. We report an experimental study of the interference-enhanced two-photon absorption in a multilevel Λ-type rubidium atomic system and compare the measurements with the theoretical calculations.
© 2000 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Figures (8)
You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Equations (19)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription