Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Stochastic theory of self-induced transparency: linearized approach

Not Accessible

Your library or personal account may give you access

Abstract

Making use of c-number stochastic theory and soliton perturbation theory, we study the quantum fluctuations of a self-induced transparency (SIT) soliton propagating through a lossless two-level medium. Considering the fluctuations as small corrections to the classical soliton, we are able to construct and solve four stochastic equations that govern the evolution of four soliton parameters: photon number (intensity), phase, timing, and momentum (frequency). We find excellent agreement between our stochastic theory of SIT solitons and the second-quantized theory of Lai and Haus [Phys. Rev. A 42, 2925 (1990)].

© 2000 Optical Society of America

Full Article  |  PDF Article
More Like This
Quantum theory of a second-order soliton based on a linearization approximation

Chen-Pang Yeang
J. Opt. Soc. Am. B 16(8) 1269-1279 (1999)

Quantum theory of soliton squeezing: a linearized approach

H. A. Haus and Y. Lai
J. Opt. Soc. Am. B 7(3) 386-392 (1990)

Soliton squeezing and the continuum

H. A. Haus and C. X. Yu
J. Opt. Soc. Am. B 17(4) 618-628 (2000)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (73)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved