Abstract
We present a model of a cw Raman laser that includes thermo-optic effects that are due to the heating that is inherent in Raman conversion. Thermal lensing and thermal index gratings at high output powers are addressed. With a quadratic duct model we show that broadening of the spatial modes is evident at low Stokes output powers and that accounting for thermal lensing in the laser design can significantly enhance the conversion efficiency. The model agrees with experimental results from a cw Raman laser and allows for the design of high-power and solid-state cw Raman lasers.
© 2002 Optical Society of America
Full Article |
PDF Article
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Equations (32)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription