Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Photorefractive properties of lithium and copper in-diffused lithium niobate crystals

Not Accessible

Your library or personal account may give you access

Abstract

Near-stoichiometric copper-doped lithium niobate crystals are fabricated by in-diffusion of thin layers of evaporated copper and a subsequent vapor transport equilibration treatment. The crystals are heated in a Li-rich atmosphere to increase the Li content. To determine the photorefractive properties, holographic as well as electrical measurements are performed. Saturation values of the refractive-index changes ΔnS, bulk photovoltaic current densities jphv, photoconductivities σph, and holographic sensitivities S are measured for light intensities up to 104 W/m2. Comparison with experimental data of congruent crystals indicates that the specific photoconductivity is 15 times larger after a vapor transport equilibration treatment. The specific bulk photovoltaic coefficient β* is 2 times larger, refractive-index changes are 7 times smaller, and the holographic sensitivity is up to 4 times larger.

© 2002 Optical Society of America

Full Article  |  PDF Article
More Like This
Photorefractive properties of congruent and stoichiometric lithium niobate at high light intensities

F. Jermann, M. Simon, and E. Krätzig
J. Opt. Soc. Am. B 12(11) 2066-2070 (1995)

Photorefractive properties of lithium niobate crystals doped with manganese

Yunping Yang, Demetri Psaltis, Marc Luennemann, Dirk Berben, Ulrich Hartwig, and Karsten Buse
J. Opt. Soc. Am. B 20(7) 1491-1502 (2003)

Nonvolatile holographic storage in photorefractive lithium tantalate crystals with laser pulses

J. Imbrock, S. Wevering, K. Buse, and E. Krätzig
J. Opt. Soc. Am. B 16(9) 1392-1397 (1999)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.