Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Studies of exciton localization in quantum-well structures by nonlinear-optical techniques

Not Accessible

Your library or personal account may give you access

Abstract

An exciton moving in a random potential is a promising model system for the study of localization effects, since its energy spectrum can be measured directly, and there are no complications resulting from Coulomb interaction. This paper reviews our work on the use of nonlinear techniques, such as hole burning and four-wave mixing, to detect the motion of two-dimensional excitons in thin GaAs–AlxGa1−x As heterostructures, in which the random potential comes from fluctuations in layer width. A clear distinction is found between the behavior of excitons below and above the absorption line center. Below the line center, hole burning is easy, and both spectral and spatial diffusion are slow, i.e., the excitons behave as if they are localized; above it the reverse is true. This is strong evidence for a mobility edge at the line center, which is the position predicted classically.

© 1985 Optical Society of America

Full Article  |  PDF Article
More Like This
Room-temperature excitonic nonlinear-optical effects in semiconductor quantum-well structures

D. S. Chemla and D. A. B. Miller
J. Opt. Soc. Am. B 2(7) 1155-1173 (1985)

Transient grating studies of excitonic optical nonlinearities in GaAs/AlGaAs multiple-quantum-well structures

A. Miller, R. J. Manning, P. K. Milsom, D. C. Hutchings, D. W. Crust, and K. Woodbridge
J. Opt. Soc. Am. B 6(4) 567-578 (1989)

Optical nonlinearity, bistability, and signal processing in semiconductors

N. Peyghambarian and H. M. Gibbs
J. Opt. Soc. Am. B 2(7) 1215-1227 (1985)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved