Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Two-species cold atomic beam

Not Accessible

Your library or personal account may give you access

Abstract

We generate a bright atomic beam containing laser-cooled rubidium and cesium, and we use this beam to load a mixed-species ultrahigh-vacuum (UHV) magneto-optical trap. We have characterized our two-species atomic beam over a range of operating conditions, and we obtain similar atom fluxes for each species. Within the UHV trap, interspecies inelastic collisions are observed in the form of enhanced decay rates of a given species in the presence of a second trapped species. We analyze the trap decays to obtain a loss rate due to heteronuclear cold collisions, and we compare our result to similar measurements in vapor-cell traps [Phys. Rev. A 63, 033406 (2001)].

© 2004 Optical Society of America

Full Article  |  PDF Article
More Like This
Generation of an intense cold-atom beam from a pyramidal magneto-optical trap: experiment and simulation

James M. Kohel, Jaime Ramirez-Serrano, Robert J. Thompson, Lute Maleki, Joshua L. Bliss, and Kenneth G. Libbrecht
J. Opt. Soc. Am. B 20(6) 1161-1168 (2003)

Compact laser cooling apparatus for simultaneous cooling of lithium and rubidium

Keith Ladouceur, Bruce G. Klappauf, Janelle Van Dongen, Nina Rauhut, Bastian Schuster, Arthur K. Mills, David J. Jones, and Kirk W. Madison
J. Opt. Soc. Am. B 26(2) 210-217 (2009)

Two-photon ionization of cold rubidium atoms

Marco Anderlini, Emmanuel Courtade, Donatella Ciampini, Jörg H. Müller, Oliver Morsch, and Ennio Arimondo
J. Opt. Soc. Am. B 21(3) 480-485 (2004)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved