Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Analytical solution for the dynamic behavior of erbium-doped fiber amplifiers with constant population inversion along the fiber

Not Accessible

Your library or personal account may give you access

Abstract

We present an analytical solution for the coupled rate and propagation equations for a dynamic two-level homogeneously broadened system interacting with radiation and with constant population inversion along the longitudinal axis of the fiber, z. We derive an analytical solution for the z dependence of these equations, which greatly simplifies the numerical solution for the output powers’ time dependence. Amplified spontaneous emission and background loss influences are considered in the model, in contrast to the previous analytical solution presented by Y. Sun et al. The solution is derived, and the importance of each term for the dynamic modeling of typical erbium-doped fiber amplifiers is analyzed.

© 2004 Optical Society of America

Full Article  |  PDF Article
More Like This
Numerical and analytical modeling of polarization-dependent gain in erbium-doped fiber amplifiers

R. Leners and T. Georges
J. Opt. Soc. Am. B 12(10) 1942-1954 (1995)

Dynamics of high-power erbium–ytterbium fiber amplifiers

Guillaume Canat, Jean-Claude Mollier, Jean-Pierre Bouzinac, Glenn M. Williams, Brian Cole, Lew Goldberg, Yves Jaouën, and Gabor Kulcsar
J. Opt. Soc. Am. B 22(11) 2308-2318 (2005)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved