Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Three-dimensional optical forces and transfer of orbital angular momentum from multiringed light beams to spherical microparticles

Not Accessible

Your library or personal account may give you access

Abstract

Experimental evidence of transfer of orbital angular momentum of multiringed beams to dielectric particles has been reported recently [e.g., J. Opt. B 4, S82 (2002); Phys. Rev. Lett. 91, 093602 (2003)]. Here we present a detailed theoretical examination of the forces involved in trapping and transferring orbital angular momentum to microparticles due to a multiringed light beam, particularly a Bessel beam. Our investigation gathers, in a more general way, the trapping forces for high-index and low-index dielectric transparent particles, as well as for reflective metallic particles, as a function of particle size and position relative to the dimensions of the rings of the beam. We find that particles can be trapped in different regions of the beam intensity profile according to their size and that an azimuthal force component opposite to the beam helicity may appear under certain circumstances, depending on the relative size and radial equilibrium position with respect to the beam for high-index spheres.

© 2004 Optical Society of America

Full Article  |  PDF Article
More Like This
Dynamics of a levitated microparticle in vacuum trapped by a perfect vortex beam: three-dimensional motion around a complex optical potential

Yoshihiko Arita, Mingzhou Chen, Ewan M. Wright, and Kishan Dholakia
J. Opt. Soc. Am. B 34(6) C14-C19 (2017)

Rigorous time domain simulation of momentum transfer between light and microscopic particles in optical trapping

Dianwen Zhang, X.-C. Yuan, S. C. Tjin, and S. Krishnan
Opt. Express 12(10) 2220-2230 (2004)

Orbital angular momentum transfer in helical Mathieu beams

Carlos Lóxpez-Mariscal, Julio C. Gutiérrez-Vega, Graham Milne, and Kishan Dholakia
Opt. Express 14(9) 4182-4187 (2006)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved