Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Analytic model for the dynamics of electron trapping materials with applications in nonlinear optical signal processing

Not Accessible

Your library or personal account may give you access

Abstract

The optical mechanism and dynamics of electron-trapping material under simultaneous illumination with two wavelengths is investigated. Our analytical model proves that the equilibrium-state luminescence of such a material can be controlled to produce highly nonlinear behavior with potential applications in nonlinear optical signal processing and optical realization of nonlinear dynamical systems. Combining this new approach with state-of-the-art fast spatial light modulators and CCD cameras that can precisely control and measure exposure, large arrays of nonlinear processing elements can be accommodated in a thin film of this material.

© 2007 Optical Society of America

Full Article  |  PDF Article
More Like This
Dynamics of electron-trapping materials under blue light and near-infrared exposure: an improved model

Ramin Pashaie and Nabil H. Farhat
J. Opt. Soc. Am. B 24(8) 1927-1941 (2007)

Optical realization of bioinspired spiking neurons in the electron trapping material thin film

Ramin Pashaie and Nabil H. Farhat
Appl. Opt. 46(35) 8411-8418 (2007)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (39)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved