Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Use of maximally entangled N-photon states for practical quantum interferometry

Not Accessible

Your library or personal account may give you access

Abstract

The phase estimation performance of photonic N00N states propagating in an attenuating medium is analyzed. It is shown that the Heisenberg limit is never achieved and that an attenuated separable state of N photons will actually produce a better phase estimate than an equally attenuated N00N state unless the transmittance of the medium is sufficiently high. Thus, for most practical applications with realistic attenuation, N00N-state-based phase estimation actually performs worse than the standard quantum limit. This performance deficit becomes more pronounced as the number of photons in the signal increases.

© 2008 Optical Society of America

Full Article  |  PDF Article
More Like This
Teleportation of an N-photon Greenberger-Horne-Zeilinger (GHZ) polarization-entangled state using linear optical elements

Yan Xia, Jie Song, Pei-Min Lu, and He-Shan Song
J. Opt. Soc. Am. B 27(6) A1-A6 (2010)

Quantum optical interferometry via the mixing of coherent and photon-subtracted squeezed vacuum states of light

Richard Birrittella and Christopher C. Gerry
J. Opt. Soc. Am. B 31(3) 586-593 (2014)

Methods for producing optical coherent state superpositions

Scott Glancy and Hilma Macedo de Vasconcelos
J. Opt. Soc. Am. B 25(5) 712-733 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (19)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.