Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Ultraviolet-enhanced supercontinuum generation in tapered photonic crystal fiber

Not Accessible

Your library or personal account may give you access

Abstract

We investigate numerically and experimentally the propagation of visible sub-50 fs pulses in a tapered small core photonic crystal fiber. The fiber has anomalous dispersion between two closely spaced zero dispersion wavelengths at 509 and 640 nm, and the excitation wavelength was varied within this range. We find that the spectral evolution in the low power regime is dominated by higher-order soliton fission, soliton self-frequency shift, and dispersive wave generation. At higher powers, extremely wide spectral broadening of the input pulse occurs within the first few millimeters of fiber. The wavelength conversion into the blue and red spectral ranges is studied as a function of the input power and excitation wavelength. Conversions into the spectral range 300–470 nm at efficiencies as high as 40% are observed when pumping at 523 nm.

© 2010 Optical Society of America

Full Article  |  PDF Article
More Like This
Supercontinuum generation, four-wave mixing, and fission of higher-order solitons in photonic-crystal fibers

Anton V. Husakou and Joachim Herrmann
J. Opt. Soc. Am. B 19(9) 2171-2182 (2002)

Ultraviolet-enhanced supercontinuum generation in uniform photonic crystal fiber pumped by a giant-chirped fiber laser

Shoufei Gao, Yingying Wang, Ruoyu Sun, Huihui Li, Cuiping Tian, Dongchen Jin, and Pu Wang
Opt. Express 22(20) 24697-24705 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.