Abstract
In this paper we develop an analytical model for the soliton self-frequency shift, which includes second- and third-order dispersion, self-steepening, the full Raman term, and, for the first time to our best knowledge, the effect of two-photon absorption (TPA). We show that TPA can have a significant effect on soliton dynamics in soft-glass materials such as chalcogenides, by severely depleting a soliton and thereby limiting the achievable redshift. Based on the model, we derive a nonlinear loss length after which the redshift is effectively halted by TPA, which proves to be a useful design tool.
©2012 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Figures (6)
You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Tables (1)
You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Equations (63)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription