Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Validity conditions for the optical Bloch equations

Not Accessible

Your library or personal account may give you access

Abstract

In a recent experiment [ R. G. Devoe and R. G. Brewer, Phys. Rev. Lett. 50, 1269 ( 1983)], it was found that the optical Bloch equations could not satisfactorily explain the signal that was observed for free-induction decay in the impurity ion cyrstal Pr3+:LaF3. Several theories have been proposed to explain this failure of the Bloch equations. In this paper, the general validity conditions for the optical Bloch equations are examined within the limits of a Markovian relaxation model. The specific problem to be considered is the interaction of an optical field with two-level atoms. The atoms undergo relaxation as a result of coupling to a perturber bath that, itself, is negligibly affected by the relaxation process. First, a simple decay-parameter model is assumed for the relaxation of atomic density-matrix elements. Such a model is found to lead to a set of generalized Bloch equations of which the conventional Bloch equations form a subset. Subsequently, more-realistic models for relaxation in both vapors and solids are considered within the limits of the impact approximation (i.e., the duration of a fluctuation can be viewed as instantaneous with respect to all relevant time scales in the problem). It is found that, even in the impact (Markovian) approximation, the generalized Bloch equations cannot be expected to provide an adequate description of relaxation, owing to effects in which a fluctuation-induced change in the atomic transition frequency persists between fluctuations. In vapors this frequency shift is produced by velocity-changing collisions that change the atomic resonance frequency (as seen in the laboratory frame), whereas in solids it is produced by local-field fluctuations. The limiting conditions under which one can expect both the generalized and the conventional Bloch equations to retain their validity are explored.

© 1986 Optical Society of America

Full Article  |  PDF Article
More Like This
Relaxation terms for strong-field optical Bloch equations

Motoomi Yamanoi and J. H. Eberly
J. Opt. Soc. Am. B 1(5) 751-755 (1984)

Statistics of dephasing perturbations and relaxational processes in a high-power optic field: application to free-induction decay

P. A. Apanasevich, S. Ya. Kilin, A. P. Nizovtsev, and N. S. Onishchenko
J. Opt. Soc. Am. B 3(4) 587-594 (1986)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (76)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved