Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Optical nonlinearity in a quantum dot–microcavity system under an external magnetic field

Not Accessible

Your library or personal account may give you access

Abstract

We theoretically study the dynamics of a strongly coupled quantum dot–bimodal microcavity system under an external magnetic field, where the nondegenerate excitonic spin states caused by the Zeeman effect are coupled to both orthogonal cavity modes. We develop an effective cavity quantum electrodynamics model, demonstrate the polarization-related nonlinear response under a linearly polarized pulse excitation by calculating the time-resolved intracavity photon number, and investigate the dependence of system parameters on the nonlinearity. In addition, we show that, when driven by two pulses with perpendicular polarization and a relative time delay, the coupled system suppresses the delayed one, which can be applied to polarized optical switching at a single-photon level.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Strong coupling between two quantum dots and a photonic crystal cavity using magnetic field tuning

Hyochul Kim, Deepak Sridharan, Thomas C. Shen, Glenn S. Solomon, and Edo Waks
Opt. Express 19(3) 2589-2598 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved