Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Fourier modal method formulation for fast analysis of two-dimensional periodic arrays of graphene

Not Accessible

Your library or personal account may give you access

Abstract

Recently, an approximate boundary condition [Opt. Lett. 38, 3009 (2013)] was proposed for fast analysis of one-dimensional periodic arrays of graphene ribbons by using the Fourier modal method (FMM). Correct factorization rules are applicable to this approximate boundary condition where graphene is modeled as surface conductivity. We extend this approach to obtain the optical properties of two-dimensional periodic arrays of graphene. In this work, optical absorption of graphene squares in a checkerboard pattern and graphene nanodisks in a hexagonal lattice are calculated by the proposed formalism. The achieved results are compared with the conventional FMM, in which graphene is modeled as a finite thickness dielectric layer. We show that for the same truncation order, computation time can be reduced to one-ninth by the proposed formulation in comparison with the conventional FMM. Furthermore, the convergence rate is increased. Therefore, thanks to the improved convergence rate and reduced computational cost for a given truncation order, the computational time is saved more than 100 times for relative error of less than 1%. This is crucially important in analyzing two-dimensional periodic structures of graphene by the FMM.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Analysis of magnetically biased graphene-based periodic structures using a transmission-line formulation

Parisa Karimi Khoozani, Mohsen Maddahali, Mahmoud Shahabadi, and Ahmad Bakhtafrouz
J. Opt. Soc. Am. B 33(12) 2566-2576 (2016)

New formulation of the Fourier modal method for crossed surface-relief gratings

Lifeng Li
J. Opt. Soc. Am. A 14(10) 2758-2767 (1997)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (30)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.