Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Modified method for computing the optical force of the plasmonics nanoparticle from the Maxwell stress tensor

Not Accessible

Your library or personal account may give you access

Abstract

By controlling the optical force, optical tweezers can manipulate many kinds of small particles without mechanical contact. In the theoretical analysis of the optical force, conventional methods are based on the integration of the Maxwell stress tensor over the outer surface of the particle, while the Maxwell stress tensor is determined by the electromagnetic field distribution around the particle itself. However, we find that this conventional method may not be appropriate in most situations, as two main issues arise, especially for plasmonics nanoparticles because of the metal involved. The first is the selection of the relative permittivity on the interface between the particle and the background medium, while the second is the use of the divergence theorem. Here, we present an improved and more correct technique to compute the optical force of optical tweezers on the plasmonics nanoparticle. The analysis of an Au-Ag core–shell nanostructure, conducted by adopting this revised method, shows that the negative force is located not only at the Fano resonance but also at longer wavelengths.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Plasmonic trapping and tuning of a gold nanoparticle dimer

Zhe Shen and Lei Su
Opt. Express 24(5) 4801-4811 (2016)

Tailoring optical pulling force on gain coated nanoparticles with nonlocal effective medium theory

X. Bian, D. L. Gao, and L. Gao
Opt. Express 25(20) 24566-24578 (2017)

Plasmon optical trapping using silicon nitride trench waveguides

Qiancheng Zhao, Caner Guclu, Yuewang Huang, Filippo Capolino, Regina Ragan, and Ozdal Boyraz
J. Opt. Soc. Am. B 33(6) 1182-1189 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.