Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Determining the geometric parameters of microbubble resonators from their spectra

Not Accessible

Your library or personal account may give you access

Abstract

A method for determining the diameters and shell thicknesses of microbubble resonators is presented; it entails simulating whispering gallery mode (WGM) spectra using a newly developed finite-difference time-domain (FDTD)-based toolkit. Spectra for a range of shell thicknesses are simulated using FDTD, assuming a linear dependence of the free spectral range on the diameter, and the free spectral ranges and positions of the prominent modes are matched to those of the measured spectrum. This method improves upon existing techniques for extracting the diameter and thickness, such as SEM imaging, which typically require the microbubble to be dissected or otherwise rendered unusable for subsequent use. The model allows a variety of methods of mode excitation to be simulated. Dye coatings are simulated by placing a layer of dipole sources on the surface of the resonator, yielding mode couplings comparable to those measured in experiments. The model is tested for a small-diameter silica glass microbubble, with the free spectral range being simulated for a range of diameters and shell thicknesses. The numerically simulated spectra are then compared to the experimentally measured spectrum. The ability to determine the geometric parameters of such resonators directly from their WGM spectra represents a step forward in the characterization of microbubble resonators. Furthermore, the model opens the way to previously unstudied spectral behavior of microbubbles with small diameters and thin shell thicknesses.

© 2016 Optical Society of America

Full Article  |  PDF Article

Corrections

9 December 2016: A correction was made to the pagination.


More Like This
Dispersion analysis of whispering gallery mode microbubble resonators

Nicolas Riesen, Wen Qi Zhang, and Tanya M. Monro
Opt. Express 24(8) 8832-8847 (2016)

Method for predicting whispering gallery mode spectra of spherical microresonators

Jonathan M. M. Hall, V. Shahraam Afshar, Matthew R. Henderson, Alexandre François, Tess Reynolds, Nicolas Riesen, and Tanya M. Monro
Opt. Express 23(8) 9924-9937 (2015)

Quasi-droplet microbubbles for high resolution sensing applications

Yong Yang, Jonathan Ward, and Síle Nic Chormaic
Opt. Express 22(6) 6881-6898 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.