Abstract
This paper presents a computational adaptive mesh refinement technique for designing photonic nanostructures with a specific perceived color. This inverse design method can be used for any color-based application of photonic structures, including pigment-free paints, anticounterfeiting materials, and reflective displays. The adaptive mesh refinement technique is efficient, and results are returned within seconds or minutes on a laptop computer, eliminating the need for cluster computing. This search method can be used for any well-characterized photonic structure and can even be adapted to accommodate fabrication constraints. In this work, the adaptive mesh search is applied to 1D, 2D, and 3D photonic structures, and the resulting designs are satisfactory matches with the desired colors.
© 2017 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Figures (13)
You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Tables (1)
You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Equations (3)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription