Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Thermal modeling, heat mitigation, and radiative cooling for double-clad fiber amplifiers

Abstract

We report a detailed formalism aimed at thermal modeling and heat mitigation in high-power double-clad fiber amplifiers. Closed-form analytical formulas are developed that take into account the spatial profile of the amplified signal and pump in the double-clad geometry; the presence of amplified spontaneous emission; and the possibility of radiative cooling due to anti-Stokes fluorescence emission. The formalism is applied to a high-power Yb-doped silica fiber amplifier. The contributions to the heat load from the pump–signal quantum defect, as well as the pump and signal parasitic absorptions, are compared with the contributions from radiative cooling. It is shown that for realistic cases, the local heat generation in kilowatt-class fiber amplifiers is dominated by either the quantum defect or the parasitic absorption depending on the pump wavelength. In conventional designs, radiative cooling can be substantial only in properly designed amplifiers, when the pump power is tens of watts or lower, unless the parasitic absorption is reduced compared with the commonly reported values in the literature. We also explore the impact of the non-ideal quantum efficiency of the gain material. The formalism developed can be used to design fiber amplifiers and lasers for optimal heat mitigation, especially due to radiative cooling.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Heat mitigation of a core/cladding Yb-doped fiber amplifier using anti-Stokes fluorescence cooling

Esmaeil Mobini, Mostafa Peysokhan, and Arash Mafi
J. Opt. Soc. Am. B 36(8) 2167-2177 (2019)

Temperature distribution inside a double-cladding optical fiber laser or amplifier

Arash Mafi
J. Opt. Soc. Am. B 37(6) 1821-1828 (2020)

Characterization of Yb-doped ZBLAN fiber as a platform for radiation-balanced lasers

Mostafa Peysokhan, Esmaeil Mobini, Arman Allahverdi, Behnam Abaie, and Arash Mafi
Photon. Res. 8(2) 202-210 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (32)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved