Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Low-loss and high-performance mid-infrared plasmon-phonon in graphene-hexagonal boron nitride waveguide

Not Accessible

Your library or personal account may give you access

Abstract

In this article, we propose a class of high-performance and low-loss waveguide by exploiting the hybridization of the plasmon-phonon modes through the coupling graphene with hexagonal boron nitride (hBN). It is found that inserting an ultra-thin hBN layer with hyperbolicity behavior between graphene and a thin low-index substrate leads to squeezing a light into hBN, enabling a low-loss light propagation as compared with a traditional graphene/substrate plasmonic waveguide. Furthermore, the results show that by choosing appropriate values for physical parameters of the proposed waveguide as well as the chemical potential of graphene, a low-loss and high-performance optical plasmon-phonon mode in the mid-infrared range can be achieved simultaneously. In particular, by increasing the chemical potential from 0.2 to 1 eV, 12- and 6-fold enhancement for propagation length (Lm) and figure of merit, respectively, is achieved with the optimized proposed waveguide. The results presented here are very helpful for designing low-loss nanophotonic devices.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Optimizing encapsulated graphene in hexagonal boron nitride toward low propagation loss and enhanced field confinement

Yaser Hajati, Zeinab Zanbouri, and Mohammad Sabaeian
J. Opt. Soc. Am. B 36(5) 1189-1199 (2019)

Hybrid plasmon–phonon polariton bands in graphene–hexagonal boron nitride metamaterials [Invited]

Hodjat Hajian, Amir Ghobadi, Sina Abedini Dereshgi, Bayram Butun, and Ekmel Ozbay
J. Opt. Soc. Am. B 34(7) D29-D35 (2017)

Modal properties of a cylindrical graphene-coated nanowire deposited on a hexagonal boron nitride substrate

Morteza Hajati and Yashar E. Monfared
Appl. Opt. 58(24) 6666-6671 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved