Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Ultrabroadband infrared near-field spectroscopy and imaging of local resonators in percolative gold films

Abstract

Percolation processes are ubiquitous in nature and are responsible for many critical phenomena such as first-order phase transitions and infectious epidemic networks. The optical properties of a percolative medium can generally be captured by the effective medium approximation (EMA) when the degree of percolation and the properties of the constituent materials are properly addressed. However, the important local collective responses of nanoclusters in the deep subwavelength regime are often only phenomenologically addressed in the standard EMA formalism. A comprehensive method that measures local light–matter interactions and registers how the local responses influence global optical properties has yet to be established on a firm basis. In this paper, we use infrared nano-imaging/spectroscopy to investigate percolative gold films in the vicinity of the critical percolation threshold. We demonstrate experimentally and theoretically that the near-field spectra yield quantitative information of the characteristic length scale of the local gold clusters and their relative oscillator strengths. As a result, EMA analysis can be augmented with near-field nano-spectroscopy to yield better predictability of the far-field reflection spectrum at the corresponding spectral range.

© 2019 Optical Society of America

Full Article  |  PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.