Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Parameter optimization and real-time calibration of a measurement-device-independent quantum key distribution network based on a back propagation artificial neural network

Not Accessible

Your library or personal account may give you access

Abstract

Selection of parameters (e.g., the probability of choosing an X-basis or Z-basis, the intensity of signal state and decoy state, etc.) and system calibrating are more challenging when the number of users of a measurement-device-independent quantum key distribution (MDI-QKD) network increases. At present, optimization algorithms are usually employed when searching for the best parameters. This method can find the optimized parameters accurately, but it may take a lot of time and hardware resources. This is a big problem in a large-scale MDI-QKD network. Here, we present, to the best of our knowledge, a new method, using a back propagation artificial neural network (BPNN) to predict, rather than search, the optimized parameters. Compared to optimization algorithms, our BPNN is faster and more lightweight, and it can save system resources. Another big problem brought by large-scale MDI-QKD networks is system recalibration. BPNN can support this work in real time, and it only needs to use some discarded data generated from the communication process, rather than adding additional devices or scanning the system.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Finite-key analysis of practical decoy-state measurement-device-independent quantum key distribution with unstable sources

Yang Wang, Wan-Su Bao, Chun Zhou, Mu-Sheng Jiang, and Hong-Wei Li
J. Opt. Soc. Am. B 36(3) B83-B91 (2019)

Asymmetric reference-frame-independent measurement-device-independent quantum key distribution

Kejin Wei, Zihao Chen, Zijian Li, Bingbing Zheng, and Zhenrong Zhang
J. Opt. Soc. Am. B 39(11) 3041-3048 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved