Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Magnetic-field controlled anomalous refraction in doped semiconductors

Not Accessible

Your library or personal account may give you access

Abstract

We predict here that a slab made of a doped semiconductor can exhibit anomalous refraction under the application of a static magnetic field. This anomalous refraction takes place in the far-infrared range and it occurs for any angle of incidence. We show that this effect is due to the fact that a doped semiconductor under a magnetic field can behave, to some extent, as a hyperbolic metamaterial. We also show that the occurrence of this anomalous refraction enables a semiconductor slab under a magnetic field to partially focus the electromagnetic radiation. The remarkable thing in our case is that we deal with naturally occurring materials and the anomalous refraction can be tuned at will with an external field.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Effective negative refractive index in ferromagnet-semiconductor superlattices

Roland H. Tarkhanyan and Dimitris G. Niarchos
Opt. Express 14(12) 5433-5444 (2006)

Optics with hyperbolic materials [Invited]

Osamu Takayama and Andrei V. Lavrinenko
J. Opt. Soc. Am. B 36(8) F38-F48 (2019)

Analysis of tunable negative refraction in a lossy and extrinsic semiconductor

Tsung-Wen Chang, Yi Min Zeng, and Chien-Jang Wu
Appl. Opt. 54(4) 658-662 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.