Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Giant resonant enhancement of optical binding of dielectric disks

Not Accessible

Your library or personal account may give you access

Abstract

Two-fold variation over the aspect ratio of each disk and distance between disks gives rise to numerous events of avoided crossing of resonances of individual disks. For these events, the hybridized anti-bonding resonant modes can acquire a morphology close to the Mie resonant mode with the high orbital momentum of an equivalent sphere. The $Q$ factor of such resonance can exceed the $Q$ factor of an isolated disk by two orders of magnitude. We show that dual incoherent counterpropagating coaxial Bessel beams with power $1\;{\rm{mW}}/{{\unicode{x00B5}}}{{\rm{m}}^2}$ with frequency resonant to such anti-bonding Mie-like modes result in unprecedented optical binding forces up to tens of nano-Newtons for silicon micrometer-sized disks. We show also that the magnitude and sign of optical forces depend strongly on the longitudinal wave vector of the Bessel beams.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Chiral and plasmonic hybrid dimer pair: reversal of both near- and far-field optical binding forces

Naima Binte Ahsan, Rafia Shamim, M. R. C. Mahdy, Saikat Chandra Das, Hamim Mahmud Rivy, Chaity Islam Dolon, Maruf Hossain, and K. M. Faisal
J. Opt. Soc. Am. B 37(5) 1273-1282 (2020)

Strong optical force induced by morphology-dependent resonances

Jack Ng, C. T. Chan, Ping Sheng, and Zhifang Lin
Opt. Lett. 30(15) 1956-1958 (2005)

Strong magnetic field enhancement and magnetic Purcell effect in a dielectric disk-ring composite nanocavity

Yang Yang, Bofeng Zhu, and Haitao Dai
J. Opt. Soc. Am. B 37(3) 702-708 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved