Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Persistent atomic frequency comb based on Zeeman sub-levels of an erbium-doped crystal waveguide

Not Accessible

Your library or personal account may give you access

Abstract

Long-lived sub-levels of the electronic ground-state manifold of rare-earth ions in crystals can be used as atomic population reservoirs for photon echo-based quantum memories. We measure the dynamics of the Zeeman sub-levels of erbium ions that are doped into a lithium niobate waveguide, finding population lifetimes at cryogenic temperatures down to 0.7 K as long as seconds. Then, using these levels, we prepare and characterize atomic frequency combs (AFCs), which can serve as a memory for quantum light at 1532 nm wavelength. The results allow predicting a 0.1% memory efficiency, limited mainly by unwanted background absorption that we believe to be caused by excitation-induced erbium spin flips and frequency shifting due to two-level systems or non-equilibrium phonons. Hence, while it should be possible to create an AFC-based quantum memory in $ {{\rm Er}^{3 + }}{:}{{\rm Ti}^{4 + }}{:}{{\rm LiNbO}_3} $, improved crystal growth together with optimized AFC preparation will be required to make it suitable for applications in quantum communication.

© 2020 Optical Society of America

Full Article  |  PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.