Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Coupled-mode theory for microresonators with quadratic nonlinearity

Not Accessible

Your library or personal account may give you access

Abstract

We use Maxwell’s equations to derive several models describing the interaction of the multi-mode fundamental field and its second harmonic in a ring microresonator with quadratic nonlinearity and quasi-phase-matching. We demonstrate how multi-mode three-wave mixing sums entering nonlinear polarization response can be calculated via Fourier transforms of products of the field envelopes. Quasi-phase-matching gratings with arbitrary profiles are incorporated seamlessly into our models. We also introduce several levels of approximations that allow us to account for dispersion of nonlinear coefficients and demonstrate how coupled-mode equations can be reduced to the envelope Lugiato–Lefever-like equations with self-steepening terms. An estimate for the ${\chi ^{(2)}}$ induced cascaded Kerr nonlinearity, in the regime of imperfect phase-matching, puts it above the intrinsic Kerr effect by several orders of magnitude.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Modulational instability of nonlinear polarization mode coupling in microresonators

T. Hansson, M. Bernard, and S. Wabnitz
J. Opt. Soc. Am. B 35(4) 835-841 (2018)

Combining FDTD and coupled-mode theory for self-pulsing modeling in coupled nonlinear microring resonators

Nessim Jebali, Loïc Bodiou, Joël Charrier, Andrea Armaroli, and Yannick Dumeige
J. Opt. Soc. Am. B 37(9) 2557-2563 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (82)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.