Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Experimental observation of spectral super-broadening of backward stimulated Raman scattering in liquids

Open Access Open Access

Abstract

The spectral super-broadening of backward stimulated Raman scattering (SRS) in four liquid samples (${\rm CCl}_4$, dimethyl sulfoxide, acetone, and ${\rm CH}_2{\rm Cl}_2$) have been observed under the pump conditions of using 532-nm and ${\sim}11 {\text -} {\rm ns}$ pulsed laser beams from a frequency-doubled and multilongitudinal mode Pockels Q-switched Nd:YAG laser device. Under the same pump conditions, in acetone the observed maximum broadening range was ${\ge}450\;{\rm cm}^{-1}$ for the backward SRS, while it was ${\le}45\;{\rm cm}^{-1}$ for the forward SRS. The physical origin of this observed effect is essentially related to the detailed temporal structure of the 532-nm pump pulse that consists of a series of subpulse of ${\sim}{50}\;{\rm ps}$ width, owing to the randomly beating effect among a large number of longitudinal modes of the Pockels Q-switched laser source. Each backward SRS subpulse undergoes multiple cross-phase modulation (XPM) by interacting with a certain number of forward pump subpulses, and consequently manifests a super-broadened spectral distribution. In contrast, each forward SRS subpulse interacts only with a single pump subpulse and therefore experiences a much limited XPM influence, resulting in a much smaller spectral broadening. Furthermore, when the 532-nm pump beam was from a single-longitudinal mode-seeded Nd:YAG laser, there was no beating-effect-induced subpulse structure of the pump pulse, and thereby no noticeable spectral broadening for both backward and forward SRS could be observed.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Theoretical explanation of spectral super-broadening of backward stimulated Raman scattering in liquids

Guang S. He, Feng-Dong Zhang, Yuzhen Shen, and Yiping Cui
J. Opt. Soc. Am. B 38(1) 174-182 (2021)

Suppression of self-induced thermal lensing in stimulated Raman scattering of liquids

Zion Hazan, Yuval Ganot, and Ilana Bar
J. Opt. Soc. Am. B 38(1) 74-78 (2021)

Ring-shaped backward stimulated Raman scattering driven by stimulated Brillouin scattering

Chengyong Feng, Jean-Claude Diels, Xiaozhen Xu, and Ladan Arissian
Opt. Express 23(13) 17035-17045 (2015)

References

  • View by:

  1. G. Eckhardt, R. W. Hellwarth, F. J. McClung, S. E. Schwarz, D. Weiner, and E. J. Woodbury, “Stimulated Raman scattering from organic liquids,” Phys. Rev. Lett. 9, 455–457 (1962).
    [Crossref]
  2. W. Kaiser and M. Maier, “Stimulated Rayleigh, Brillouin, and Raman spectroscopy,” in Laser Handbook, F. T. Arecchi and E. O. Schulz-Dubois, eds. (North-Holland, 1972), Vol. 2, pp. 1077–1150.
  3. R. W. Hellwarth, “Theory of stimulated Raman scattering,” Phys. Rev. 130, 1850–1852 (1963).
    [Crossref]
  4. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).
  5. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  6. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  7. G. E. Stegeman and R. A. Stegeman, Nonlinear Optics: Phenomena, Materials and Devices (Wiley, 2012).
  8. G. S. He, Nonlinear Optics and Photonics (Oxford University, 2015).
  9. G. S. He, “Stimulated scattering effects of intense coherent light,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2009), Vol. 53, Chap. 4, pp. 201–292.
  10. C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
    [Crossref]
  11. R. L. Fork, C. V. Shank, C. Hirlimann, R. Yen, and W. J. Tomlinson, “Femtosecond white-light continuum pulses,” Opt. Lett. 8, 1–3 (1983).
    [Crossref]
  12. R. R. Alfano, The Supercontinuum Laser Source, 2nd ed. (Springer, 2006).
  13. A. S. L. Gomes, V. L. Da Silva, J. R. Taylor, B. J. Ainslie, and S. P. Craig, “Picosecond stimulated Raman scattering in P2O5-SiO2 based single mode optical fibre,” Opt. Commun. 64, 373–378 (1987).
    [Crossref]
  14. S. V. Chernikov, Y. Zhu, J. R. Taylor, and V. P. Gapontsev, “Supercontinuum self-Q-switched ytterbium fiber laser,” Opt. Lett. 22, 298–300 (1997).
    [Crossref]
  15. A. R. Johnson, A. S. Mayer, A. Klenner, K. Luke, E. S. Lamb, M. R. E. Lamont, C. Joshi, Y. Okawachi, F. W. Wise, M. Lipson, U. Keller, and A. L. Gaeta, “Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide,” Opt. Lett. 40, 5117–5120 (2015).
    [Crossref]
  16. J. Safioui, F. Leo, B. Kuyken, S.-P. Gorza, S. K. Selvaraja, R. Baets, P. Emplit, G. Roelkens, and S. Massar, “Supercontinuum generation in hydrogenated amorphous silicon waveguides at telecommunication wavelengths,” Opt. Express 22, 3089–3097 (2014).
    [Crossref]
  17. G. Genty, M. Lehtonen, and H. Ludvigsen, “Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses,” Opt. Express 12, 4614–4624 (2004).
    [Crossref]
  18. M. Wittmann and A. Penzkofer, “Spectral superbroadening of femtosecond laser pulses,” Opt. Commun. 126, 308–317 (1996).
    [Crossref]
  19. M. Liao, X. Yan, W. Gao, Z. Duan, G. Qin, T. Suzuki, and Y. Ohishi, “Five-order SRSs and supercontinuum generation from a tapered tellurite microstructured fiber with longitudinally varying dispersion,” Opt. Express 19, 15389–15396 (2011).
    [Crossref]
  20. J. C. Hernandez-Garcia, J. M. Estudillo-Ayala, R. I. Mata-Chavez, O. Pottiez, R. Rojas-Laguna, and E. Alvarado-Mendez, “Experimental study on a broad and flat supercontinuum spectrum generated through a system of two PCFs,” Laser Phys. Lett. 10, 075101 (2013).
    [Crossref]
  21. N. Bloembergen and P. Lallemand, “Complex intensity-dependent index of refraction, frequency broadening of stimulated Raman lines, and stimulated Rayleigh scattering,” Phys. Rev. Lett. 16, 81–84 (1966).
    [Crossref]
  22. W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H. Weigmann, and C. Thuy, “An anomalous frequency broadening in water,” Opt. Commun. 4, 413–415 (1972).
    [Crossref]
  23. G. S. He and P. N. Prasad, “Stimulated Kerr scattering and reorientation work of molecules in liquid CS2,” Phys. Rev. A 41, 2687–2697 (1990).
    [Crossref]
  24. G. S. He, R. Burzynski, and P. N. Prasad, “A novel nonlinear optical effect: stimulated Raman–Kerr scattering in a benzene liquid-core fiber,” J. Chem. Phys. 93, 7647–7655 (1990).
    [Crossref]
  25. F. Dai, Y. Xu, and X. Chen, “Enhanced and broadened SRS spectra of toluene mixed with chloroform in liquid-core fiber,” Opt. Express 17, 19882–19886 (2009).
    [Crossref]
  26. G. Fanjoux, A. Sudirman, J.-C. Beugnot, L. Furfaro, W. Margulis, and T. Sylvestre, “Stimulated Raman-Kerr scattering in an integrated nonlinear optofluidic fiber arrangement,” Opt. Lett. 39, 5407–5410 (2014).
    [Crossref]
  27. J. Weaver, R. Lehmberg, S. Obenschain, D. Kehne, and M. Wolford, “Spectral and far-field broadening due to stimulated rotational Raman scattering driven by the Nike krypton fluoride laser,” Appl. Opt. 56, 8618–8631 (2017).
    [Crossref]
  28. A. V. Konyashchenko, L. L. Losev, and V. S. Pazyuk, “Femtosecond Raman frequency shifter-pulse compressor,” Opt. Lett. 44, 1646–1649 (2019).
    [Crossref]
  29. G. S. He, A. Kuzmin, and P. N. Prasad, “Pump spectral linewidth influence on stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) and self-termination behavior of SRS in liquids,” Ann. Phys. 528, 852–864 (2016).
    [Crossref]
  30. G. Fanjoux, S. Margueron, J.-C. Beugnot, and T. Sylvestre, “Supercontinuum generation by stimulated Raman-Kerr scattering in a liquid-core optical fiber,” J. Opt. Soc. Am. B 34, 1677–1683 (2017).
    [Crossref]
  31. G. S. He, G. C. Xu, Y. Cui, and P. N. Prasad, “Difference of spectral superbroadening behavior in Kerr-type and non-Kerr-type liquids pumped with ultrashort laser pulses,” Appl. Opt. 32, 4507–4512 (1993).
    [Crossref]
  32. G. S. He, F.-D. Zhang, Y.-Z. Shen, and Y.-P. Cui, “Theoretical explanation of spectral super-broadening of backward stimulated Raman scattering in liquids,” J. Opt. Soc. Am. B. 38, 174–182 (2020).
    [Crossref]

2020 (1)

G. S. He, F.-D. Zhang, Y.-Z. Shen, and Y.-P. Cui, “Theoretical explanation of spectral super-broadening of backward stimulated Raman scattering in liquids,” J. Opt. Soc. Am. B. 38, 174–182 (2020).
[Crossref]

2019 (1)

2017 (2)

2016 (1)

G. S. He, A. Kuzmin, and P. N. Prasad, “Pump spectral linewidth influence on stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) and self-termination behavior of SRS in liquids,” Ann. Phys. 528, 852–864 (2016).
[Crossref]

2015 (1)

2014 (2)

2013 (1)

J. C. Hernandez-Garcia, J. M. Estudillo-Ayala, R. I. Mata-Chavez, O. Pottiez, R. Rojas-Laguna, and E. Alvarado-Mendez, “Experimental study on a broad and flat supercontinuum spectrum generated through a system of two PCFs,” Laser Phys. Lett. 10, 075101 (2013).
[Crossref]

2011 (1)

2009 (1)

2004 (1)

1997 (1)

1996 (1)

M. Wittmann and A. Penzkofer, “Spectral superbroadening of femtosecond laser pulses,” Opt. Commun. 126, 308–317 (1996).
[Crossref]

1993 (1)

1990 (2)

G. S. He and P. N. Prasad, “Stimulated Kerr scattering and reorientation work of molecules in liquid CS2,” Phys. Rev. A 41, 2687–2697 (1990).
[Crossref]

G. S. He, R. Burzynski, and P. N. Prasad, “A novel nonlinear optical effect: stimulated Raman–Kerr scattering in a benzene liquid-core fiber,” J. Chem. Phys. 93, 7647–7655 (1990).
[Crossref]

1987 (1)

A. S. L. Gomes, V. L. Da Silva, J. R. Taylor, B. J. Ainslie, and S. P. Craig, “Picosecond stimulated Raman scattering in P2O5-SiO2 based single mode optical fibre,” Opt. Commun. 64, 373–378 (1987).
[Crossref]

1983 (1)

1976 (1)

C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
[Crossref]

1972 (1)

W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H. Weigmann, and C. Thuy, “An anomalous frequency broadening in water,” Opt. Commun. 4, 413–415 (1972).
[Crossref]

1966 (1)

N. Bloembergen and P. Lallemand, “Complex intensity-dependent index of refraction, frequency broadening of stimulated Raman lines, and stimulated Rayleigh scattering,” Phys. Rev. Lett. 16, 81–84 (1966).
[Crossref]

1963 (1)

R. W. Hellwarth, “Theory of stimulated Raman scattering,” Phys. Rev. 130, 1850–1852 (1963).
[Crossref]

1962 (1)

G. Eckhardt, R. W. Hellwarth, F. J. McClung, S. E. Schwarz, D. Weiner, and E. J. Woodbury, “Stimulated Raman scattering from organic liquids,” Phys. Rev. Lett. 9, 455–457 (1962).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Ainslie, B. J.

A. S. L. Gomes, V. L. Da Silva, J. R. Taylor, B. J. Ainslie, and S. P. Craig, “Picosecond stimulated Raman scattering in P2O5-SiO2 based single mode optical fibre,” Opt. Commun. 64, 373–378 (1987).
[Crossref]

Alfano, R. R.

R. R. Alfano, The Supercontinuum Laser Source, 2nd ed. (Springer, 2006).

Alvarado-Mendez, E.

J. C. Hernandez-Garcia, J. M. Estudillo-Ayala, R. I. Mata-Chavez, O. Pottiez, R. Rojas-Laguna, and E. Alvarado-Mendez, “Experimental study on a broad and flat supercontinuum spectrum generated through a system of two PCFs,” Laser Phys. Lett. 10, 075101 (2013).
[Crossref]

Baets, R.

Beugnot, J.-C.

Bloembergen, N.

N. Bloembergen and P. Lallemand, “Complex intensity-dependent index of refraction, frequency broadening of stimulated Raman lines, and stimulated Rayleigh scattering,” Phys. Rev. Lett. 16, 81–84 (1966).
[Crossref]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

Burzynski, R.

G. S. He, R. Burzynski, and P. N. Prasad, “A novel nonlinear optical effect: stimulated Raman–Kerr scattering in a benzene liquid-core fiber,” J. Chem. Phys. 93, 7647–7655 (1990).
[Crossref]

Chen, X.

Chernikov, S. V.

Craig, S. P.

A. S. L. Gomes, V. L. Da Silva, J. R. Taylor, B. J. Ainslie, and S. P. Craig, “Picosecond stimulated Raman scattering in P2O5-SiO2 based single mode optical fibre,” Opt. Commun. 64, 373–378 (1987).
[Crossref]

Cui, Y.

Cui, Y.-P.

G. S. He, F.-D. Zhang, Y.-Z. Shen, and Y.-P. Cui, “Theoretical explanation of spectral super-broadening of backward stimulated Raman scattering in liquids,” J. Opt. Soc. Am. B. 38, 174–182 (2020).
[Crossref]

Da Silva, V. L.

A. S. L. Gomes, V. L. Da Silva, J. R. Taylor, B. J. Ainslie, and S. P. Craig, “Picosecond stimulated Raman scattering in P2O5-SiO2 based single mode optical fibre,” Opt. Commun. 64, 373–378 (1987).
[Crossref]

Dai, F.

Duan, Z.

Eckhardt, G.

G. Eckhardt, R. W. Hellwarth, F. J. McClung, S. E. Schwarz, D. Weiner, and E. J. Woodbury, “Stimulated Raman scattering from organic liquids,” Phys. Rev. Lett. 9, 455–457 (1962).
[Crossref]

Emplit, P.

Estudillo-Ayala, J. M.

J. C. Hernandez-Garcia, J. M. Estudillo-Ayala, R. I. Mata-Chavez, O. Pottiez, R. Rojas-Laguna, and E. Alvarado-Mendez, “Experimental study on a broad and flat supercontinuum spectrum generated through a system of two PCFs,” Laser Phys. Lett. 10, 075101 (2013).
[Crossref]

Fanjoux, G.

Fork, R. L.

Furfaro, L.

Gaeta, A. L.

Gao, W.

Gapontsev, V. P.

Genty, G.

Gomes, A. S. L.

A. S. L. Gomes, V. L. Da Silva, J. R. Taylor, B. J. Ainslie, and S. P. Craig, “Picosecond stimulated Raman scattering in P2O5-SiO2 based single mode optical fibre,” Opt. Commun. 64, 373–378 (1987).
[Crossref]

Gorza, S.-P.

He, G. S.

G. S. He, F.-D. Zhang, Y.-Z. Shen, and Y.-P. Cui, “Theoretical explanation of spectral super-broadening of backward stimulated Raman scattering in liquids,” J. Opt. Soc. Am. B. 38, 174–182 (2020).
[Crossref]

G. S. He, A. Kuzmin, and P. N. Prasad, “Pump spectral linewidth influence on stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) and self-termination behavior of SRS in liquids,” Ann. Phys. 528, 852–864 (2016).
[Crossref]

G. S. He, G. C. Xu, Y. Cui, and P. N. Prasad, “Difference of spectral superbroadening behavior in Kerr-type and non-Kerr-type liquids pumped with ultrashort laser pulses,” Appl. Opt. 32, 4507–4512 (1993).
[Crossref]

G. S. He and P. N. Prasad, “Stimulated Kerr scattering and reorientation work of molecules in liquid CS2,” Phys. Rev. A 41, 2687–2697 (1990).
[Crossref]

G. S. He, R. Burzynski, and P. N. Prasad, “A novel nonlinear optical effect: stimulated Raman–Kerr scattering in a benzene liquid-core fiber,” J. Chem. Phys. 93, 7647–7655 (1990).
[Crossref]

G. S. He, Nonlinear Optics and Photonics (Oxford University, 2015).

G. S. He, “Stimulated scattering effects of intense coherent light,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2009), Vol. 53, Chap. 4, pp. 201–292.

Hellwarth, R. W.

R. W. Hellwarth, “Theory of stimulated Raman scattering,” Phys. Rev. 130, 1850–1852 (1963).
[Crossref]

G. Eckhardt, R. W. Hellwarth, F. J. McClung, S. E. Schwarz, D. Weiner, and E. J. Woodbury, “Stimulated Raman scattering from organic liquids,” Phys. Rev. Lett. 9, 455–457 (1962).
[Crossref]

Hernandez-Garcia, J. C.

J. C. Hernandez-Garcia, J. M. Estudillo-Ayala, R. I. Mata-Chavez, O. Pottiez, R. Rojas-Laguna, and E. Alvarado-Mendez, “Experimental study on a broad and flat supercontinuum spectrum generated through a system of two PCFs,” Laser Phys. Lett. 10, 075101 (2013).
[Crossref]

Hirlimann, C.

Johnson, A. R.

Joshi, C.

Kaiser, W.

W. Kaiser and M. Maier, “Stimulated Rayleigh, Brillouin, and Raman spectroscopy,” in Laser Handbook, F. T. Arecchi and E. O. Schulz-Dubois, eds. (North-Holland, 1972), Vol. 2, pp. 1077–1150.

Kehne, D.

Keller, U.

Klenner, A.

Konyashchenko, A. V.

Kuyken, B.

Kuzmin, A.

G. S. He, A. Kuzmin, and P. N. Prasad, “Pump spectral linewidth influence on stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) and self-termination behavior of SRS in liquids,” Ann. Phys. 528, 852–864 (2016).
[Crossref]

Lallemand, P.

N. Bloembergen and P. Lallemand, “Complex intensity-dependent index of refraction, frequency broadening of stimulated Raman lines, and stimulated Rayleigh scattering,” Phys. Rev. Lett. 16, 81–84 (1966).
[Crossref]

Lamb, E. S.

Lamont, M. R. E.

Lau, A.

W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H. Weigmann, and C. Thuy, “An anomalous frequency broadening in water,” Opt. Commun. 4, 413–415 (1972).
[Crossref]

Lehmberg, R.

Lehtonen, M.

Lenz, K.

W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H. Weigmann, and C. Thuy, “An anomalous frequency broadening in water,” Opt. Commun. 4, 413–415 (1972).
[Crossref]

Leo, F.

Liao, M.

Lin, C.

C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
[Crossref]

Lipson, M.

Losev, L. L.

Ludvigsen, H.

Luke, K.

Maier, M.

W. Kaiser and M. Maier, “Stimulated Rayleigh, Brillouin, and Raman spectroscopy,” in Laser Handbook, F. T. Arecchi and E. O. Schulz-Dubois, eds. (North-Holland, 1972), Vol. 2, pp. 1077–1150.

Margueron, S.

Margulis, W.

Massar, S.

Mata-Chavez, R. I.

J. C. Hernandez-Garcia, J. M. Estudillo-Ayala, R. I. Mata-Chavez, O. Pottiez, R. Rojas-Laguna, and E. Alvarado-Mendez, “Experimental study on a broad and flat supercontinuum spectrum generated through a system of two PCFs,” Laser Phys. Lett. 10, 075101 (2013).
[Crossref]

Mayer, A. S.

McClung, F. J.

G. Eckhardt, R. W. Hellwarth, F. J. McClung, S. E. Schwarz, D. Weiner, and E. J. Woodbury, “Stimulated Raman scattering from organic liquids,” Phys. Rev. Lett. 9, 455–457 (1962).
[Crossref]

Obenschain, S.

Ohishi, Y.

Okawachi, Y.

Pazyuk, V. S.

Penzkofer, A.

M. Wittmann and A. Penzkofer, “Spectral superbroadening of femtosecond laser pulses,” Opt. Commun. 126, 308–317 (1996).
[Crossref]

Pfeiffer, M.

W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H. Weigmann, and C. Thuy, “An anomalous frequency broadening in water,” Opt. Commun. 4, 413–415 (1972).
[Crossref]

Pottiez, O.

J. C. Hernandez-Garcia, J. M. Estudillo-Ayala, R. I. Mata-Chavez, O. Pottiez, R. Rojas-Laguna, and E. Alvarado-Mendez, “Experimental study on a broad and flat supercontinuum spectrum generated through a system of two PCFs,” Laser Phys. Lett. 10, 075101 (2013).
[Crossref]

Prasad, P. N.

G. S. He, A. Kuzmin, and P. N. Prasad, “Pump spectral linewidth influence on stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) and self-termination behavior of SRS in liquids,” Ann. Phys. 528, 852–864 (2016).
[Crossref]

G. S. He, G. C. Xu, Y. Cui, and P. N. Prasad, “Difference of spectral superbroadening behavior in Kerr-type and non-Kerr-type liquids pumped with ultrashort laser pulses,” Appl. Opt. 32, 4507–4512 (1993).
[Crossref]

G. S. He and P. N. Prasad, “Stimulated Kerr scattering and reorientation work of molecules in liquid CS2,” Phys. Rev. A 41, 2687–2697 (1990).
[Crossref]

G. S. He, R. Burzynski, and P. N. Prasad, “A novel nonlinear optical effect: stimulated Raman–Kerr scattering in a benzene liquid-core fiber,” J. Chem. Phys. 93, 7647–7655 (1990).
[Crossref]

Qin, G.

Roelkens, G.

Rojas-Laguna, R.

J. C. Hernandez-Garcia, J. M. Estudillo-Ayala, R. I. Mata-Chavez, O. Pottiez, R. Rojas-Laguna, and E. Alvarado-Mendez, “Experimental study on a broad and flat supercontinuum spectrum generated through a system of two PCFs,” Laser Phys. Lett. 10, 075101 (2013).
[Crossref]

Safioui, J.

Schwarz, S. E.

G. Eckhardt, R. W. Hellwarth, F. J. McClung, S. E. Schwarz, D. Weiner, and E. J. Woodbury, “Stimulated Raman scattering from organic liquids,” Phys. Rev. Lett. 9, 455–457 (1962).
[Crossref]

Selvaraja, S. K.

Shank, C. V.

Shen, Y. R.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).

Shen, Y.-Z.

G. S. He, F.-D. Zhang, Y.-Z. Shen, and Y.-P. Cui, “Theoretical explanation of spectral super-broadening of backward stimulated Raman scattering in liquids,” J. Opt. Soc. Am. B. 38, 174–182 (2020).
[Crossref]

Stegeman, G. E.

G. E. Stegeman and R. A. Stegeman, Nonlinear Optics: Phenomena, Materials and Devices (Wiley, 2012).

Stegeman, R. A.

G. E. Stegeman and R. A. Stegeman, Nonlinear Optics: Phenomena, Materials and Devices (Wiley, 2012).

Stolen, R. H.

C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
[Crossref]

Sudirman, A.

Suzuki, T.

Sylvestre, T.

Taylor, J. R.

S. V. Chernikov, Y. Zhu, J. R. Taylor, and V. P. Gapontsev, “Supercontinuum self-Q-switched ytterbium fiber laser,” Opt. Lett. 22, 298–300 (1997).
[Crossref]

A. S. L. Gomes, V. L. Da Silva, J. R. Taylor, B. J. Ainslie, and S. P. Craig, “Picosecond stimulated Raman scattering in P2O5-SiO2 based single mode optical fibre,” Opt. Commun. 64, 373–378 (1987).
[Crossref]

Thuy, C.

W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H. Weigmann, and C. Thuy, “An anomalous frequency broadening in water,” Opt. Commun. 4, 413–415 (1972).
[Crossref]

Tomlinson, W. J.

Weaver, J.

Weigmann, H.

W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H. Weigmann, and C. Thuy, “An anomalous frequency broadening in water,” Opt. Commun. 4, 413–415 (1972).
[Crossref]

Weiner, D.

G. Eckhardt, R. W. Hellwarth, F. J. McClung, S. E. Schwarz, D. Weiner, and E. J. Woodbury, “Stimulated Raman scattering from organic liquids,” Phys. Rev. Lett. 9, 455–457 (1962).
[Crossref]

Werncke, W.

W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H. Weigmann, and C. Thuy, “An anomalous frequency broadening in water,” Opt. Commun. 4, 413–415 (1972).
[Crossref]

Wise, F. W.

Wittmann, M.

M. Wittmann and A. Penzkofer, “Spectral superbroadening of femtosecond laser pulses,” Opt. Commun. 126, 308–317 (1996).
[Crossref]

Wolford, M.

Woodbury, E. J.

G. Eckhardt, R. W. Hellwarth, F. J. McClung, S. E. Schwarz, D. Weiner, and E. J. Woodbury, “Stimulated Raman scattering from organic liquids,” Phys. Rev. Lett. 9, 455–457 (1962).
[Crossref]

Xu, G. C.

Xu, Y.

Yan, X.

Yen, R.

Zhang, F.-D.

G. S. He, F.-D. Zhang, Y.-Z. Shen, and Y.-P. Cui, “Theoretical explanation of spectral super-broadening of backward stimulated Raman scattering in liquids,” J. Opt. Soc. Am. B. 38, 174–182 (2020).
[Crossref]

Zhu, Y.

Ann. Phys. (1)

G. S. He, A. Kuzmin, and P. N. Prasad, “Pump spectral linewidth influence on stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) and self-termination behavior of SRS in liquids,” Ann. Phys. 528, 852–864 (2016).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
[Crossref]

J. Chem. Phys. (1)

G. S. He, R. Burzynski, and P. N. Prasad, “A novel nonlinear optical effect: stimulated Raman–Kerr scattering in a benzene liquid-core fiber,” J. Chem. Phys. 93, 7647–7655 (1990).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Opt. Soc. Am. B. (1)

G. S. He, F.-D. Zhang, Y.-Z. Shen, and Y.-P. Cui, “Theoretical explanation of spectral super-broadening of backward stimulated Raman scattering in liquids,” J. Opt. Soc. Am. B. 38, 174–182 (2020).
[Crossref]

Laser Phys. Lett. (1)

J. C. Hernandez-Garcia, J. M. Estudillo-Ayala, R. I. Mata-Chavez, O. Pottiez, R. Rojas-Laguna, and E. Alvarado-Mendez, “Experimental study on a broad and flat supercontinuum spectrum generated through a system of two PCFs,” Laser Phys. Lett. 10, 075101 (2013).
[Crossref]

Opt. Commun. (3)

M. Wittmann and A. Penzkofer, “Spectral superbroadening of femtosecond laser pulses,” Opt. Commun. 126, 308–317 (1996).
[Crossref]

A. S. L. Gomes, V. L. Da Silva, J. R. Taylor, B. J. Ainslie, and S. P. Craig, “Picosecond stimulated Raman scattering in P2O5-SiO2 based single mode optical fibre,” Opt. Commun. 64, 373–378 (1987).
[Crossref]

W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H. Weigmann, and C. Thuy, “An anomalous frequency broadening in water,” Opt. Commun. 4, 413–415 (1972).
[Crossref]

Opt. Express (4)

Opt. Lett. (5)

Phys. Rev. (1)

R. W. Hellwarth, “Theory of stimulated Raman scattering,” Phys. Rev. 130, 1850–1852 (1963).
[Crossref]

Phys. Rev. A (1)

G. S. He and P. N. Prasad, “Stimulated Kerr scattering and reorientation work of molecules in liquid CS2,” Phys. Rev. A 41, 2687–2697 (1990).
[Crossref]

Phys. Rev. Lett. (2)

G. Eckhardt, R. W. Hellwarth, F. J. McClung, S. E. Schwarz, D. Weiner, and E. J. Woodbury, “Stimulated Raman scattering from organic liquids,” Phys. Rev. Lett. 9, 455–457 (1962).
[Crossref]

N. Bloembergen and P. Lallemand, “Complex intensity-dependent index of refraction, frequency broadening of stimulated Raman lines, and stimulated Rayleigh scattering,” Phys. Rev. Lett. 16, 81–84 (1966).
[Crossref]

Other (8)

W. Kaiser and M. Maier, “Stimulated Rayleigh, Brillouin, and Raman spectroscopy,” in Laser Handbook, F. T. Arecchi and E. O. Schulz-Dubois, eds. (North-Holland, 1972), Vol. 2, pp. 1077–1150.

R. R. Alfano, The Supercontinuum Laser Source, 2nd ed. (Springer, 2006).

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

G. E. Stegeman and R. A. Stegeman, Nonlinear Optics: Phenomena, Materials and Devices (Wiley, 2012).

G. S. He, Nonlinear Optics and Photonics (Oxford University, 2015).

G. S. He, “Stimulated scattering effects of intense coherent light,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2009), Vol. 53, Chap. 4, pp. 201–292.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. Fabry–Perot (F–P) interferograms of the pump spectral lines from the frequency-doubled Nd:YAG laser working in (a) MLM operation and in (b) SML operation. The free spectral ranges for (a) and (b) were ${1.7}\;{{\rm cm}^{- 1}}$ and ${0.083}\;{{\rm cm}^{- 1}}$ , respectively.
Fig. 2.
Fig. 2. Temporal waveform of the 532-nm laser pulse resulting from the (a) MLM operation and from the (b) SLM operation. The resolution of measurement is ${\sim}{1}\;{\rm ns}$ .
Fig. 3.
Fig. 3. Optical setup for measuring the spectral width for the transmitted pump beam, the forward SRS beam, and the backward SRS beam from a given Raman liquid.
Fig. 4.
Fig. 4. Spectra of backward SBS and SRS from a 5-cm liquid cell filled with (a)  ${\rm CCl}_4$ , (b) DMSO, (c) acetone, and (d)  ${\rm CH}_2{\rm Cl}_2$ . The SBS signals were arbitrarily attenuated.
Fig. 5.
Fig. 5. Spectra of the forward transmitted pump and SRS beams (upper trace) and the backward SBS and SRS beams (lower trace) from a ${\rm CCl}_4$ liquid sample, measured at different pump energy levels. (a) 0.80 mJ, (b) 1.0 mJ, (c) 1.3 mJ, (d) 1.8 mJ, (e) 2.2 mJ, and (f) 2.8 mJ. Exposure time 1 s.
Fig. 6.
Fig. 6. Spectra of the forward SRS (upper trace) and backward SRS (lower trace) from a DMSO liquid sample, measured at different input pump energy levels. (a) 0.35 mJ, (b) 0.55 mJ, (c) 0.80 mJ, (d) 1.0 mJ, (e) 1.2 mJ, and (f) 1.5 mJ. Exposure time 1 s.
Fig. 7.
Fig. 7. Spectra of the forward SRS (upper trace) and the backward SRS (lower trace) from an acetone liquid sample, measured at different input energy levels. (a) 0.75 mJ, (b) 0.90 mJ, (c) 1.2 mJ, (d) 1.5 mJ, and (e) 2.0 mJ. Exposure time 1 s.
Fig. 8.
Fig. 8. Spectra of the forward SRS (upper trace) and backward SRS (lower trace) from a ${\rm CH}_2{\rm Cl}_2$ liquid sample, measured at different pump energy levels. (a) 0.55 mJ, (b) 0.65 mJ, (c) 0.70 mJ, (d) 0.80 mJ, (e) 1.2 mJ, and (f) 1.5 mJ. Exposure time 1 s.
Fig. 9.
Fig. 9. Waveforms of the input pump pulse with the (a) forward SRS pulse and with the (b) backward SRS pulse from DMSO sample pumped at different levels. Temporal resolution of the oscilloscope was ${\sim}{1}\;{\rm ns}$ .
Fig. 10.
Fig. 10. Spectra of the forward SRS (upper trace) and the backward SRS (lower trace) from the DMSO liquid sample, measured at different pump levels of (a) 0.85 mJ, (b) 1.1 mJ, (c) 1.5 mJ, (d) 2.0 mJ, and (e) 2.8 mJ. Pump beam was from a single-longitudinal mode Q-switched laser source. Exposure time 1 s.
Fig. 11.
Fig. 11. Time-scanning streak image of an unfocused single 532-nm pulse from the multimode Q-switched and frequency-doubled Nd:YAG laser. Temporal resolution of the measurement is ${\sim}{50}\;{\rm ps}$ .
Fig. 12.
Fig. 12. Schematic illustration showing the XPM (a) between the pump subpulses and the forward SRS subpulses and (b) between the pump subpulses and the backward SRS subpulses.

Tables (2)

Tables Icon

Table 1. Measured Raman Frequency-Shift Values of the First-Order Stokes SRS in Four Liquids

Tables Icon

Table 2. Maximum Overall Spectral Broadening Range of Backward and Forward SRS, Measured in Four Liquids

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved