Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

High performance plasmonically enhanced graphene photodetector for near-infrared wavelengths

Not Accessible

Your library or personal account may give you access

Abstract

Graphene is a very attractive material for applications in optoelectronic devices such as photodetectors because of fast response and broadband absorption. However, the weak absorption of the graphene layer limits the performance of graphene-based photodetectors. To this end, a high responsivity graphene-based plasmonic photodetector, operating over a wide optical wavelength range, is presented. In order to enhance the light absorption efficiency and, consequently, to improve the responsivity of the photodetector, a graphene layer and a specific plasmonic nanostructure are combined. The numerical simulation results reveal that nearly perfect light absorption is achieved at the wavelength of 1550 nm for the proposed structure and also, this structure is polarization insensitive and enables perfect absorption for TE and TM polarizations at the wavelength of 1550 nm. The circuit model of the structure is presented based on transmission line theory whose results are in very good agreement with the numerical simulation results. Also, the high responsivity of 513 mA/W and the bandwidth of 47 GHz are achieved for this scheme.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Plasmon-enhanced graphene photodetector with CMOS-compatible titanium nitride

Mohammed AlAloul and Mahmoud Rasras
J. Opt. Soc. Am. B 38(2) 602-610 (2021)

High-sensitivity and independently tunable perfect absorber using a nanohole and a cross-shaped graphene

Zahra Mahdavikia, Yaser Hajati, Mohammad Sabaeian, and Zeinab Zanbouri
J. Opt. Soc. Am. B 38(5) 1487-1496 (2021)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (17)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved