Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Heralded quantum-entanglement transfer based on photon absorption of nitrogen-vacancy centers in diamond

Not Accessible

Your library or personal account may give you access

Abstract

As a kind of hybrid spin system, nitrogen-vacancy (NV) centers in diamond have shown great advantages in implementing quantum registers for quantum information processing (QIP). When scaling up quantum registers to quantum networks for long-distance quantum communication and distributed quantum computation, determining how to entangle two registers in distant nodes is a basic challenge in the absence of direct interactions. In this paper, we present a scheme for entangling two distant NV centers based on the special optical absorption and emission of NV centers. In this demonstration, we transfer the entanglement information of a pair of photons to nuclear spins in NV centers and create remote NV–NV entanglement mediated by entangled photons. We then explain how to extract the entangled information from NV centers to prepare on-demand entangled photons for optical quantum information processing. The strategy of entanglement transfer between spins and photons demonstrated herein may pave the way for an NV-center-based quantum network.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Simple schemes for universal quantum gates with nitrogen-vacancy centers in diamond

Liu-Yong Cheng, Hong-Fu Wang, and Shou Zhang
J. Opt. Soc. Am. B 30(7) 1821-1826 (2013)

Heralded universal quantum computing on electron spins in diamond nitrogen-vacancy centers assisted by low-Q microtoroidal resonators

Ming Li, Xin Wang, Jia-Ying Lin, and Mei Zhang
J. Opt. Soc. Am. B 37(3) 618-626 (2020)

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.