Y. Zeng, W. Fan, and X. Wang, “The combined effects of intra-cavity spectral filtering on the fiber mode-locked laser,” Opt. Commun. 474, 126152 (2020).
[Crossref]
D. Y. Song, X. Shi, C. Wu, D. Tang, and H. Zhang, “Recent progress of study on optical solitons in fiber lasers,” Appl. Phys. Rev. 6, 021313 (2019).
[Crossref]
H. Sakaguchi, D. V. Skryabin, and B. A. Malomed, “Stationary and oscillatory bound states of dissipative solitons created by third-order dispersion,” Opt. Lett. 43, 2688–2691 (2018).
[Crossref]
G. S. Parmar, R. Pradhan, B. A. Malomed, and S. Jana, “Dispersion-managed soliton fiber laser with random dispersion, multiphoton absorption and gain dispersion,” J. Opt. 20, 105501 (2018).
[Crossref]
Y. Li, L. Wang, Y. Kang, X. Guo, and L. Tong, “Microfiber-enabled dissipative soliton fiber laser at 2 µm,” Opt. Lett. 43, 6105–6108 (2018).
[Crossref]
G. S. Parmar, S. Jana, and B. A. Malomed, “Dissipative soliton fiber lasers with higher-order nonlinearity, multiphoton absorption and emission, and random dispersion,” J. Opt. Soc. Am. B 34, 850–860 (2017).
[Crossref]
P. Balla, S. Buch, and G. P. Agrawal, “Effect of Raman scattering on soliton interactions in optical fibers,” J. Opt. Soc. Am. B 34, 1247–1254 (2017).
[Crossref]
S. C. Latas, M. F. S. Ferreira, and M. Facão, “Ultrashort high-amplitude dissipative solitons in the presence of higher-order effects,” J. Opt. Soc. Am. B 34, 1033–1040 (2017).
[Crossref]
G. S. Parmar, S. Jana, and B. A. Malomed, “Dissipative soliton fiber lasers with higher-order nonlinearity, multiphoton absorption and emission, and random dispersion,” J. Opt. Soc. Am. B 34, 850–860 (2017).
[Crossref]
S. Jana, Shivani, G. S. Parmar, B. Kaur, Q. Zhou, A. Biswas, and M. Belić, “Evolution of bell-shaped dissipative optical solitons from super-Gaussian pulse in parabolic law medium with bandwidth limited amplification,” Optoelectron. Adv. Mater. Rapid Commun. 10, 143–150 (2016).
C. Cartes and O. Descalzi, “Periodic exploding dissipative solitons,” Phys. Rev. A 93, 031801 (2016).
[Crossref]
G. S. Parmar and S. Jana, “Bistable dissipative soliton in cubic-quintic nonlinear medium with multiphoton absorption and gain dispersion,” J. Electromagn. Waves Appl. 29, 1410–1429 (2015).
[Crossref]
A. Chong, L. G. Wright, and F. W. Wise, “Ultrafast fiber lasers based on self-similar pulse evolution: a review of current progress,” Rep. Prog. Phys. 78, 113901 (2015).
[Crossref]
M. F. Saleh, A. Armaroli, A. Marini, and F. Biancalana, “Strong Raman-induced noninstantaneous soliton interactions in gas-filled photonic crystal fibers,” Opt. Lett. 40, 4058–4061 (2015).
[Crossref]
Z. Luo, Y. Li, M. Zhong, Y. Huang, X. Wan, J. Peng, and J. Weng, “Nonlinear optical absorption of few-layer molybdenum diselenide (MoSe2) for passively mode-locked soliton fiber laser,” Photon. Res. 3, A79–A86 (2015).
[Crossref]
E. M. Gromov and B. A. Malomed, “Solitons in a forced nonlinear Schrödinger equation with the pseudo-Raman effect,” Phys. Rev. E 92, 062926 (2015).
[Crossref]
V. L. Kalashnikov and E. Sorokin, “Dissipative Raman solitons,” Opt. Express 22, 30118–30126 (2014).
[Crossref]
X. Gai, D. Choi, and B. Luther-Davies, “Negligible nonlinear absorption in hydrogenated amorphous silicon at 1.55 µm for ultra-fast nonlinear signal processing,” Opt. Express 22, 9948–9958 (2014).
[Crossref]
B. Fu, Y. Hua, X. Xiao, H. Zhu, Z. Sun, and C. Yang, “Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2 µm,” IEEE J. Sel. Top. Quantum Electron. 20, 411–415 (2014).
[Crossref]
S. C. Latas and M. F. S. Ferreira, “Impact of higher-order effects on pulsating and chaotic solitons in dissipative systems,” Eur. Phys. J. Spec. Top. 223, 79–89 (2014).
[Crossref]
Y. Chen, M. Wu, P. Tang, S. Chen, J. Du, G. Jiang, Y. Li, C. Zhao, H. Zhang, and S. Wen, “The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator based saturable absorber,” Laser Phys. Lett. 11, 055101 (2014).
[Crossref]
P. Wan, L. Yang, and J. Liu, “High pulse energy 2 µm femtosecond fiber laser,” Opt. Express 21, 1798–1803 (2013).
[Crossref]
S. K. Wang, Q. Y. Ning, A. P. Luo, Z. B. Lin, Z. C. Luo, and W. C. Xu, “Dissipative soliton resonance in a passively mode-locked figure-eight fiber laser,” Opt. Express 21, 2402–2407 (2013).
[Crossref]
L. Duan, X. Liu, D. Mao, L. Wang, and G. Wang, “Experimental observation of dissipative soliton resonance in an anomalous-dispersion fiber laser,” Opt. Express 20, 265–270 (2012).
[Crossref]
M. I. Carvalho and M. Facao, “Evolution of cubic–quintic complex Ginzburg–Landau erupting solitons under the effect of third-order dispersion and intrapulse Raman scattering,” Phys. Lett. A 376, 950–956 (2012).
[Crossref]
H. Huang, L. Yang, and J. Liu, “Qualitative assessment of laser-induced breakdown spectra generated with a femtosecond fiber laser,” Appl. Opt. 51, 8669–8676 (2012).
[Crossref]
P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
[Crossref]
M. Kolobov, A. Mussot, A. Kudlinski, E. Louvergneaux, and M. Taki, “Third-order dispersion drastically changes parametric gain in optical fiber systems,” Phys. Rev. A 83, 035801 (2011).
[Crossref]
B. Nagaraju, R. K. Varshney, G. P. Agrawal, and B. P. Pal, “Parabolic pulse generation in a dispersion-decreasing solid-core photonic bandgap Bragg fiber,” Opt. Commun. 283, 2525–2528 (2010).
[Crossref]
D. V. Skryabin and A. V. Gorbach, “Colloquium: looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287–1299 (2010).
[Crossref]
S. C. V. Latas and M. F. S. Ferreira, “Soliton explosion control by higher-order effects,” Opt. Lett. 35, 1771–1773 (2010).
[Crossref]
H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96, 111112 (2010).
[Crossref]
L. Zhao, D. Tang, X. Wu, and H. Zhang, “Dissipative soliton generation in Yb-fiber laser with an invisible intracavity bandpass filter,” Opt. Lett. 35, 2756–2758 (2010).
[Crossref]
D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27, B63–B92 (2010).
[Crossref]
H. Zhang, D. Y. Tang, L. M. Zhao, and R. J. Knize, “Vector dark domain wall solitons in a fiber ring laser,” Opt. Express 18, 4428–4433 (2010).
[Crossref]
M. Facão, M. I. Carvalho, S. C. Latas, and M. F. Ferreira, “Control of complex Ginzburg–Landau equation eruptions using intrapulse Raman scattering and corresponding travelling solutions,” Phys. Lett. A 374, 4844–4847 (2010).
[Crossref]
S. Tang, J. Liu, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Developing compact multiphoton systems using femtosecond fiber lasers,” J. Biomed. Opt. 14, 030508 (2009).
[Crossref]
H. Zhang, D. Y. Tang, L. M. Zhao, X. Wu, and H. Y. Tam, “Dissipative vector solitons in a dispersion-managed cavity fiber laser with net positive cavity dispersion,” Opt. Express 17, 455–460 (2009).
[Crossref]
D. Pal, S. G. Ali, and B. Talukdar, “Evolution of optical pulses in the presence of third-order dispersion,” Pramana 72, 939–950 (2009).
[Crossref]
B. G. Bale and S. Boscolo, “Impact of third-order fibre dispersion on the evolution of parabolic optical pulses,” J. Opt. 12, 015202 (2009).
[Crossref]
S. Zhang, G. Zhao, A. Luo, and Z. Zhang, “Third-Order dispersion role on parabolic pulse propagation in dispersion-decreasing fiber with normal group-velocity dispersion,” Appl. Phys. B 94, 227–232 (2009).
[Crossref]
S. Roy, S. Bhadra, and G. P. Agrawal, “Dispersive waves emitted by solitons perturbed by third-order dispersion inside optical fibers,” Phys. Rev. A 79, 023824 (2009).
[Crossref]
L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, and N. Xiang, “Soliton trapping in fiber lasers,” Opt. Express 16, 9528–9533 (2008).
[Crossref]
H. Zhang, D. Y. Tang, L. M. Zhao, and N. Xiang, “Coherent energy exchange between components of a vector soliton in fiber lasers,” Opt. Express 16, 12618–12623 (2008).
[Crossref]
W. Renninger, A. Chong, and F. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).
[Crossref]
N. Akhmediev, J. M. Soto-Crespo, and P. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372, 3124–3128 (2008).
[Crossref]
S. Roy and S. Bhadra, “Study of pulse evolution and optical bistability under the influence of cubic-quintic nonlinearity and third order dispersion,” J. Nonlinear Opt. Phys. Mater. 16, 119–135 (2007).
[Crossref]
M. Olivier, V. Roy, and M. Piche, “Third-order dispersion and bound states of pulses in a fiber laser,” Opt. Lett. 31, 580–582 (2006).
[Crossref]
X. Feng, H. Y. Tam, and P. K. A. Wai, “Stable and uniform multiwavelength erbium-doped fiber laser using nonlinear polarization rotation,” Opt. Express 14, 8205–8210 (2006).
[Crossref]
L. M. Zhao, D. Y. Tang, and J. Wu, “Gain-guided soliton in a positive group-dispersion fiber laser,” Opt. Lett. 31, 1788–1790 (2006).
[Crossref]
L. Song, X. Shi, W. Xue, Z. Li, and G. Zhou, “Analysis on femtosecond pulses generated by passively mode-locked lasers with higher-order effects,” Opt. Commun. 246, 495–503 (2005).
[Crossref]
S. C. V. Latas and M. F. S. Ferreira, “Soliton propagation in the presence of intrapulse Raman scattering and nonlinear gain,” Opt. Commun. 251, 415–422 (2005).
[Crossref]
X. Shi, L. Li, R. Hao, Z. Li, and G. Zhou, “Stability analysis and interaction of chirped femtosecond soliton-like laser pulses,” Opt. Commun. 241, 185–194 (2004).
[Crossref]
F. K. Abdullaev, D. V. Navotny, and B. B. Baizakov, “Optical pulse propagation in fibers with random dispersion,” Physica D 192, 83–94 (2004).
[Crossref]
J. Santhanam and G. P. Agrawal, “Raman-induced spectral shifts in optical fibers: general theory based on the moment method,” Opt. Commun. 222, 413–420 (2003).
[Crossref]
M. Chertkov, I. Gabitov, P. M. Lushnikov, J. Moeser, and Z. Toroczkai, “Pinning method of pulse confinement in optical fiber with random dispersion,” J. Opt. Soc. Am. B 19, 2538–2550 (2002).
[Crossref]
Z. Xu, L. Li, Z. Li, and G. Zhou, “Soliton interaction under the influence of higher-order effects,” Opt. Commun. 210, 375–384 (2002).
[Crossref]
N. Akhmediev, J. M. Soto-Crespo, and G. Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg-Landau equation approach,” Phys. Rev. E 63, 056602 (2001).
[Crossref]
M. Chertkov, I. Gabitov, and J. Moeser, “Pulse confinement in optical fibers with random dispersion,” Proc. Natl. Acad. Sci. USA 98, 14208–14211 (2001).
[Crossref]
B. A. Malomed, D. J. Frantzeskakis, H. E. Nistazakis, A. Tsigopoulos, and K. Hizanidis, “Dissipative solitons under the action of the third-order dispersion,” Phys. Rev. E 60, 3324–3331 (1999).
[Crossref]
M. J. F. Digonne, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, “Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: a review,” Opt. Fiber Technol. 3, 44–64 (1997).
[Crossref]
M. Haelterman and A. P. Sheppard, “Polarization domain walls in diffractive or dispersive Kerr media,” Opt. Lett. 19, 96–98 (1994).
[Crossref]
B. A. Malomed, “Optical domain walls,” Phys. Rev. E 50, 1565–1571 (1994).
[Crossref]
Y. Kodama, M. Romagnoli, S. Wabnitz, and M. Midrio, “Role of third-order dispersion on soliton instabilities and interactions in optical fibers,” Opt. Lett. 19, 165–167 (1994).
[Crossref]
B. A. Malomed, N. Sasa, and J. Satsuma, “Evolution of a damped soliton in a higher-order nonlinear Schrödinger equation,” Chaos Solitons Fractals 1, 383–388 (1991).
[Crossref]
L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095–1098 (1980).
[Crossref]
F. K. Abdullaev, D. V. Navotny, and B. B. Baizakov, “Optical pulse propagation in fibers with random dispersion,” Physica D 192, 83–94 (2004).
[Crossref]
P. Balla, S. Buch, and G. P. Agrawal, “Effect of Raman scattering on soliton interactions in optical fibers,” J. Opt. Soc. Am. B 34, 1247–1254 (2017).
[Crossref]
B. Nagaraju, R. K. Varshney, G. P. Agrawal, and B. P. Pal, “Parabolic pulse generation in a dispersion-decreasing solid-core photonic bandgap Bragg fiber,” Opt. Commun. 283, 2525–2528 (2010).
[Crossref]
S. Roy, S. Bhadra, and G. P. Agrawal, “Dispersive waves emitted by solitons perturbed by third-order dispersion inside optical fibers,” Phys. Rev. A 79, 023824 (2009).
[Crossref]
J. Santhanam and G. P. Agrawal, “Raman-induced spectral shifts in optical fibers: general theory based on the moment method,” Opt. Commun. 222, 413–420 (2003).
[Crossref]
G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, 2020).
G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
Y. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, 2003).
P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
[Crossref]
N. Akhmediev, J. M. Soto-Crespo, and P. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372, 3124–3128 (2008).
[Crossref]
N. Akhmediev, J. M. Soto-Crespo, and G. Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg-Landau equation approach,” Phys. Rev. E 63, 056602 (2001).
[Crossref]
N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, “Stable soliton pairs in optical transmission lines and fiber lasers,” J. Opt. Soc. Am. B 15, 515–523 (1998).
[Crossref]
N. Akhmediev and A. Ankiewicz, “Dissipative solitons in the complex Ginzburg-Landau and Swift-Hohenberg equations,” in Dissipative Solitons, N. Akhmediev and A. Ankiewicz, eds. (Springer, 2005), pp. 1–17.
D. Pal, S. G. Ali, and B. Talukdar, “Evolution of optical pulses in the presence of third-order dispersion,” Pramana 72, 939–950 (2009).
[Crossref]
N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, “Stable soliton pairs in optical transmission lines and fiber lasers,” J. Opt. Soc. Am. B 15, 515–523 (1998).
[Crossref]
N. Akhmediev and A. Ankiewicz, “Dissipative solitons in the complex Ginzburg-Landau and Swift-Hohenberg equations,” in Dissipative Solitons, N. Akhmediev and A. Ankiewicz, eds. (Springer, 2005), pp. 1–17.
F. K. Abdullaev, D. V. Navotny, and B. B. Baizakov, “Optical pulse propagation in fibers with random dispersion,” Physica D 192, 83–94 (2004).
[Crossref]
B. G. Bale and S. Boscolo, “Impact of third-order fibre dispersion on the evolution of parabolic optical pulses,” J. Opt. 12, 015202 (2009).
[Crossref]
H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96, 111112 (2010).
[Crossref]
S. Jana, Shivani, G. S. Parmar, B. Kaur, Q. Zhou, A. Biswas, and M. Belić, “Evolution of bell-shaped dissipative optical solitons from super-Gaussian pulse in parabolic law medium with bandwidth limited amplification,” Optoelectron. Adv. Mater. Rapid Commun. 10, 143–150 (2016).
S. Roy, S. Bhadra, and G. P. Agrawal, “Dispersive waves emitted by solitons perturbed by third-order dispersion inside optical fibers,” Phys. Rev. A 79, 023824 (2009).
[Crossref]
S. Roy and S. Bhadra, “Study of pulse evolution and optical bistability under the influence of cubic-quintic nonlinearity and third order dispersion,” J. Nonlinear Opt. Phys. Mater. 16, 119–135 (2007).
[Crossref]
S. Jana, Shivani, G. S. Parmar, B. Kaur, Q. Zhou, A. Biswas, and M. Belić, “Evolution of bell-shaped dissipative optical solitons from super-Gaussian pulse in parabolic law medium with bandwidth limited amplification,” Optoelectron. Adv. Mater. Rapid Commun. 10, 143–150 (2016).
B. G. Bale and S. Boscolo, “Impact of third-order fibre dispersion on the evolution of parabolic optical pulses,” J. Opt. 12, 015202 (2009).
[Crossref]
C. Cartes and O. Descalzi, “Periodic exploding dissipative solitons,” Phys. Rev. A 93, 031801 (2016).
[Crossref]
M. I. Carvalho and M. Facao, “Evolution of cubic–quintic complex Ginzburg–Landau erupting solitons under the effect of third-order dispersion and intrapulse Raman scattering,” Phys. Lett. A 376, 950–956 (2012).
[Crossref]
M. Facão, M. I. Carvalho, S. C. Latas, and M. F. Ferreira, “Control of complex Ginzburg–Landau equation eruptions using intrapulse Raman scattering and corresponding travelling solutions,” Phys. Lett. A 374, 4844–4847 (2010).
[Crossref]
Y. Chen, M. Wu, P. Tang, S. Chen, J. Du, G. Jiang, Y. Li, C. Zhao, H. Zhang, and S. Wen, “The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator based saturable absorber,” Laser Phys. Lett. 11, 055101 (2014).
[Crossref]
Y. Chen, M. Wu, P. Tang, S. Chen, J. Du, G. Jiang, Y. Li, C. Zhao, H. Zhang, and S. Wen, “The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator based saturable absorber,” Laser Phys. Lett. 11, 055101 (2014).
[Crossref]
S. Tang, J. Liu, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Developing compact multiphoton systems using femtosecond fiber lasers,” J. Biomed. Opt. 14, 030508 (2009).
[Crossref]
M. Chertkov, I. Gabitov, P. M. Lushnikov, J. Moeser, and Z. Toroczkai, “Pinning method of pulse confinement in optical fiber with random dispersion,” J. Opt. Soc. Am. B 19, 2538–2550 (2002).
[Crossref]
M. Chertkov, I. Gabitov, and J. Moeser, “Pulse confinement in optical fibers with random dispersion,” Proc. Natl. Acad. Sci. USA 98, 14208–14211 (2001).
[Crossref]
A. Chong, L. G. Wright, and F. W. Wise, “Ultrafast fiber lasers based on self-similar pulse evolution: a review of current progress,” Rep. Prog. Phys. 78, 113901 (2015).
[Crossref]
W. Renninger, A. Chong, and F. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).
[Crossref]
C. Cartes and O. Descalzi, “Periodic exploding dissipative solitons,” Phys. Rev. A 93, 031801 (2016).
[Crossref]
M. J. F. Digonne, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, “Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: a review,” Opt. Fiber Technol. 3, 44–64 (1997).
[Crossref]
Y. Chen, M. Wu, P. Tang, S. Chen, J. Du, G. Jiang, Y. Li, C. Zhao, H. Zhang, and S. Wen, “The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator based saturable absorber,” Laser Phys. Lett. 11, 055101 (2014).
[Crossref]
M. I. Carvalho and M. Facao, “Evolution of cubic–quintic complex Ginzburg–Landau erupting solitons under the effect of third-order dispersion and intrapulse Raman scattering,” Phys. Lett. A 376, 950–956 (2012).
[Crossref]
S. C. Latas, M. F. S. Ferreira, and M. Facão, “Ultrashort high-amplitude dissipative solitons in the presence of higher-order effects,” J. Opt. Soc. Am. B 34, 1033–1040 (2017).
[Crossref]
M. Facão, M. I. Carvalho, S. C. Latas, and M. F. Ferreira, “Control of complex Ginzburg–Landau equation eruptions using intrapulse Raman scattering and corresponding travelling solutions,” Phys. Lett. A 374, 4844–4847 (2010).
[Crossref]
Y. Zeng, W. Fan, and X. Wang, “The combined effects of intra-cavity spectral filtering on the fiber mode-locked laser,” Opt. Commun. 474, 126152 (2020).
[Crossref]
M. Facão, M. I. Carvalho, S. C. Latas, and M. F. Ferreira, “Control of complex Ginzburg–Landau equation eruptions using intrapulse Raman scattering and corresponding travelling solutions,” Phys. Lett. A 374, 4844–4847 (2010).
[Crossref]
S. C. Latas, M. F. S. Ferreira, and M. Facão, “Ultrashort high-amplitude dissipative solitons in the presence of higher-order effects,” J. Opt. Soc. Am. B 34, 1033–1040 (2017).
[Crossref]
S. C. Latas and M. F. S. Ferreira, “Impact of higher-order effects on pulsating and chaotic solitons in dissipative systems,” Eur. Phys. J. Spec. Top. 223, 79–89 (2014).
[Crossref]
S. C. V. Latas and M. F. S. Ferreira, “Soliton explosion control by higher-order effects,” Opt. Lett. 35, 1771–1773 (2010).
[Crossref]
S. C. V. Latas and M. F. S. Ferreira, “Soliton propagation in the presence of intrapulse Raman scattering and nonlinear gain,” Opt. Commun. 251, 415–422 (2005).
[Crossref]
B. A. Malomed, D. J. Frantzeskakis, H. E. Nistazakis, A. Tsigopoulos, and K. Hizanidis, “Dissipative solitons under the action of the third-order dispersion,” Phys. Rev. E 60, 3324–3331 (1999).
[Crossref]
B. Fu, Y. Hua, X. Xiao, H. Zhu, Z. Sun, and C. Yang, “Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2 µm,” IEEE J. Sel. Top. Quantum Electron. 20, 411–415 (2014).
[Crossref]
M. Chertkov, I. Gabitov, P. M. Lushnikov, J. Moeser, and Z. Toroczkai, “Pinning method of pulse confinement in optical fiber with random dispersion,” J. Opt. Soc. Am. B 19, 2538–2550 (2002).
[Crossref]
M. Chertkov, I. Gabitov, and J. Moeser, “Pulse confinement in optical fibers with random dispersion,” Proc. Natl. Acad. Sci. USA 98, 14208–14211 (2001).
[Crossref]
D. V. Skryabin and A. V. Gorbach, “Colloquium: looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287–1299 (2010).
[Crossref]
L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095–1098 (1980).
[Crossref]
P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
[Crossref]
N. Akhmediev, J. M. Soto-Crespo, and P. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372, 3124–3128 (2008).
[Crossref]
E. M. Gromov and B. A. Malomed, “Solitons in a forced nonlinear Schrödinger equation with the pseudo-Raman effect,” Phys. Rev. E 92, 062926 (2015).
[Crossref]
X. Shi, L. Li, R. Hao, Z. Li, and G. Zhou, “Stability analysis and interaction of chirped femtosecond soliton-like laser pulses,” Opt. Commun. 241, 185–194 (2004).
[Crossref]
B. A. Malomed, D. J. Frantzeskakis, H. E. Nistazakis, A. Tsigopoulos, and K. Hizanidis, “Dissipative solitons under the action of the third-order dispersion,” Phys. Rev. E 60, 3324–3331 (1999).
[Crossref]
B. Fu, Y. Hua, X. Xiao, H. Zhu, Z. Sun, and C. Yang, “Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2 µm,” IEEE J. Sel. Top. Quantum Electron. 20, 411–415 (2014).
[Crossref]
G. S. Parmar, R. Pradhan, B. A. Malomed, and S. Jana, “Dispersion-managed soliton fiber laser with random dispersion, multiphoton absorption and gain dispersion,” J. Opt. 20, 105501 (2018).
[Crossref]
G. S. Parmar, S. Jana, and B. A. Malomed, “Dissipative soliton fiber lasers with higher-order nonlinearity, multiphoton absorption and emission, and random dispersion,” J. Opt. Soc. Am. B 34, 850–860 (2017).
[Crossref]
G. S. Parmar, S. Jana, and B. A. Malomed, “Dissipative soliton fiber lasers with higher-order nonlinearity, multiphoton absorption and emission, and random dispersion,” J. Opt. Soc. Am. B 34, 850–860 (2017).
[Crossref]
S. Jana, Shivani, G. S. Parmar, B. Kaur, Q. Zhou, A. Biswas, and M. Belić, “Evolution of bell-shaped dissipative optical solitons from super-Gaussian pulse in parabolic law medium with bandwidth limited amplification,” Optoelectron. Adv. Mater. Rapid Commun. 10, 143–150 (2016).
G. S. Parmar and S. Jana, “Bistable dissipative soliton in cubic-quintic nonlinear medium with multiphoton absorption and gain dispersion,” J. Electromagn. Waves Appl. 29, 1410–1429 (2015).
[Crossref]
Y. Chen, M. Wu, P. Tang, S. Chen, J. Du, G. Jiang, Y. Li, C. Zhao, H. Zhang, and S. Wen, “The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator based saturable absorber,” Laser Phys. Lett. 11, 055101 (2014).
[Crossref]
S. Jana, Shivani, G. S. Parmar, B. Kaur, Q. Zhou, A. Biswas, and M. Belić, “Evolution of bell-shaped dissipative optical solitons from super-Gaussian pulse in parabolic law medium with bandwidth limited amplification,” Optoelectron. Adv. Mater. Rapid Commun. 10, 143–150 (2016).
Y. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, 2003).
H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96, 111112 (2010).
[Crossref]
H. Zhang, D. Y. Tang, L. M. Zhao, and R. J. Knize, “Vector dark domain wall solitons in a fiber ring laser,” Opt. Express 18, 4428–4433 (2010).
[Crossref]
M. Kolobov, A. Mussot, A. Kudlinski, E. Louvergneaux, and M. Taki, “Third-order dispersion drastically changes parametric gain in optical fiber systems,” Phys. Rev. A 83, 035801 (2011).
[Crossref]
S. Tang, J. Liu, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Developing compact multiphoton systems using femtosecond fiber lasers,” J. Biomed. Opt. 14, 030508 (2009).
[Crossref]
M. Kolobov, A. Mussot, A. Kudlinski, E. Louvergneaux, and M. Taki, “Third-order dispersion drastically changes parametric gain in optical fiber systems,” Phys. Rev. A 83, 035801 (2011).
[Crossref]
S. C. Latas, M. F. S. Ferreira, and M. Facão, “Ultrashort high-amplitude dissipative solitons in the presence of higher-order effects,” J. Opt. Soc. Am. B 34, 1033–1040 (2017).
[Crossref]
S. C. Latas and M. F. S. Ferreira, “Impact of higher-order effects on pulsating and chaotic solitons in dissipative systems,” Eur. Phys. J. Spec. Top. 223, 79–89 (2014).
[Crossref]
M. Facão, M. I. Carvalho, S. C. Latas, and M. F. Ferreira, “Control of complex Ginzburg–Landau equation eruptions using intrapulse Raman scattering and corresponding travelling solutions,” Phys. Lett. A 374, 4844–4847 (2010).
[Crossref]
X. Shi, L. Li, R. Hao, Z. Li, and G. Zhou, “Stability analysis and interaction of chirped femtosecond soliton-like laser pulses,” Opt. Commun. 241, 185–194 (2004).
[Crossref]
Z. Xu, L. Li, Z. Li, and G. Zhou, “Soliton interaction under the influence of higher-order effects,” Opt. Commun. 210, 375–384 (2002).
[Crossref]
Y. Li, L. Wang, Y. Kang, X. Guo, and L. Tong, “Microfiber-enabled dissipative soliton fiber laser at 2 µm,” Opt. Lett. 43, 6105–6108 (2018).
[Crossref]
Z. Luo, Y. Li, M. Zhong, Y. Huang, X. Wan, J. Peng, and J. Weng, “Nonlinear optical absorption of few-layer molybdenum diselenide (MoSe2) for passively mode-locked soliton fiber laser,” Photon. Res. 3, A79–A86 (2015).
[Crossref]
Y. Chen, M. Wu, P. Tang, S. Chen, J. Du, G. Jiang, Y. Li, C. Zhao, H. Zhang, and S. Wen, “The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator based saturable absorber,” Laser Phys. Lett. 11, 055101 (2014).
[Crossref]
L. Song, X. Shi, W. Xue, Z. Li, and G. Zhou, “Analysis on femtosecond pulses generated by passively mode-locked lasers with higher-order effects,” Opt. Commun. 246, 495–503 (2005).
[Crossref]
X. Shi, L. Li, R. Hao, Z. Li, and G. Zhou, “Stability analysis and interaction of chirped femtosecond soliton-like laser pulses,” Opt. Commun. 241, 185–194 (2004).
[Crossref]
Z. Xu, L. Li, Z. Li, and G. Zhou, “Soliton interaction under the influence of higher-order effects,” Opt. Commun. 210, 375–384 (2002).
[Crossref]
P. Wan, L. Yang, and J. Liu, “High pulse energy 2 µm femtosecond fiber laser,” Opt. Express 21, 1798–1803 (2013).
[Crossref]
H. Huang, L. Yang, and J. Liu, “Qualitative assessment of laser-induced breakdown spectra generated with a femtosecond fiber laser,” Appl. Opt. 51, 8669–8676 (2012).
[Crossref]
S. Tang, J. Liu, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Developing compact multiphoton systems using femtosecond fiber lasers,” J. Biomed. Opt. 14, 030508 (2009).
[Crossref]
H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96, 111112 (2010).
[Crossref]
M. Kolobov, A. Mussot, A. Kudlinski, E. Louvergneaux, and M. Taki, “Third-order dispersion drastically changes parametric gain in optical fiber systems,” Phys. Rev. A 83, 035801 (2011).
[Crossref]
S. Zhang, G. Zhao, A. Luo, and Z. Zhang, “Third-Order dispersion role on parabolic pulse propagation in dispersion-decreasing fiber with normal group-velocity dispersion,” Appl. Phys. B 94, 227–232 (2009).
[Crossref]
G. S. Parmar, R. Pradhan, B. A. Malomed, and S. Jana, “Dispersion-managed soliton fiber laser with random dispersion, multiphoton absorption and gain dispersion,” J. Opt. 20, 105501 (2018).
[Crossref]
H. Sakaguchi, D. V. Skryabin, and B. A. Malomed, “Stationary and oscillatory bound states of dissipative solitons created by third-order dispersion,” Opt. Lett. 43, 2688–2691 (2018).
[Crossref]
G. S. Parmar, S. Jana, and B. A. Malomed, “Dissipative soliton fiber lasers with higher-order nonlinearity, multiphoton absorption and emission, and random dispersion,” J. Opt. Soc. Am. B 34, 850–860 (2017).
[Crossref]
G. S. Parmar, S. Jana, and B. A. Malomed, “Dissipative soliton fiber lasers with higher-order nonlinearity, multiphoton absorption and emission, and random dispersion,” J. Opt. Soc. Am. B 34, 850–860 (2017).
[Crossref]
E. M. Gromov and B. A. Malomed, “Solitons in a forced nonlinear Schrödinger equation with the pseudo-Raman effect,” Phys. Rev. E 92, 062926 (2015).
[Crossref]
B. A. Malomed, D. J. Frantzeskakis, H. E. Nistazakis, A. Tsigopoulos, and K. Hizanidis, “Dissipative solitons under the action of the third-order dispersion,” Phys. Rev. E 60, 3324–3331 (1999).
[Crossref]
B. A. Malomed, “Optical domain walls,” Phys. Rev. E 50, 1565–1571 (1994).
[Crossref]
B. A. Malomed, N. Sasa, and J. Satsuma, “Evolution of a damped soliton in a higher-order nonlinear Schrödinger equation,” Chaos Solitons Fractals 1, 383–388 (1991).
[Crossref]
M. Chertkov, I. Gabitov, P. M. Lushnikov, J. Moeser, and Z. Toroczkai, “Pinning method of pulse confinement in optical fiber with random dispersion,” J. Opt. Soc. Am. B 19, 2538–2550 (2002).
[Crossref]
M. Chertkov, I. Gabitov, and J. Moeser, “Pulse confinement in optical fibers with random dispersion,” Proc. Natl. Acad. Sci. USA 98, 14208–14211 (2001).
[Crossref]
L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095–1098 (1980).
[Crossref]
M. Kolobov, A. Mussot, A. Kudlinski, E. Louvergneaux, and M. Taki, “Third-order dispersion drastically changes parametric gain in optical fiber systems,” Phys. Rev. A 83, 035801 (2011).
[Crossref]
B. Nagaraju, R. K. Varshney, G. P. Agrawal, and B. P. Pal, “Parabolic pulse generation in a dispersion-decreasing solid-core photonic bandgap Bragg fiber,” Opt. Commun. 283, 2525–2528 (2010).
[Crossref]
F. K. Abdullaev, D. V. Navotny, and B. B. Baizakov, “Optical pulse propagation in fibers with random dispersion,” Physica D 192, 83–94 (2004).
[Crossref]
B. A. Malomed, D. J. Frantzeskakis, H. E. Nistazakis, A. Tsigopoulos, and K. Hizanidis, “Dissipative solitons under the action of the third-order dispersion,” Phys. Rev. E 60, 3324–3331 (1999).
[Crossref]
B. Nagaraju, R. K. Varshney, G. P. Agrawal, and B. P. Pal, “Parabolic pulse generation in a dispersion-decreasing solid-core photonic bandgap Bragg fiber,” Opt. Commun. 283, 2525–2528 (2010).
[Crossref]
D. Pal, S. G. Ali, and B. Talukdar, “Evolution of optical pulses in the presence of third-order dispersion,” Pramana 72, 939–950 (2009).
[Crossref]
M. J. F. Digonne, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, “Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: a review,” Opt. Fiber Technol. 3, 44–64 (1997).
[Crossref]
G. S. Parmar, R. Pradhan, B. A. Malomed, and S. Jana, “Dispersion-managed soliton fiber laser with random dispersion, multiphoton absorption and gain dispersion,” J. Opt. 20, 105501 (2018).
[Crossref]
G. S. Parmar, S. Jana, and B. A. Malomed, “Dissipative soliton fiber lasers with higher-order nonlinearity, multiphoton absorption and emission, and random dispersion,” J. Opt. Soc. Am. B 34, 850–860 (2017).
[Crossref]
G. S. Parmar, S. Jana, and B. A. Malomed, “Dissipative soliton fiber lasers with higher-order nonlinearity, multiphoton absorption and emission, and random dispersion,” J. Opt. Soc. Am. B 34, 850–860 (2017).
[Crossref]
S. Jana, Shivani, G. S. Parmar, B. Kaur, Q. Zhou, A. Biswas, and M. Belić, “Evolution of bell-shaped dissipative optical solitons from super-Gaussian pulse in parabolic law medium with bandwidth limited amplification,” Optoelectron. Adv. Mater. Rapid Commun. 10, 143–150 (2016).
G. S. Parmar and S. Jana, “Bistable dissipative soliton in cubic-quintic nonlinear medium with multiphoton absorption and gain dispersion,” J. Electromagn. Waves Appl. 29, 1410–1429 (2015).
[Crossref]
G. S. Parmar, R. Pradhan, B. A. Malomed, and S. Jana, “Dispersion-managed soliton fiber laser with random dispersion, multiphoton absorption and gain dispersion,” J. Opt. 20, 105501 (2018).
[Crossref]
W. Renninger, A. Chong, and F. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).
[Crossref]
W. H. Renninger and F. W. Wise, “Dissipative soliton fiber lasers,” in Fiber Lasers, O. G. Okhotnikov, ed. (Wiley, 2012), pp. 97–133.
S. Roy, S. Bhadra, and G. P. Agrawal, “Dispersive waves emitted by solitons perturbed by third-order dispersion inside optical fibers,” Phys. Rev. A 79, 023824 (2009).
[Crossref]
S. Roy and S. Bhadra, “Study of pulse evolution and optical bistability under the influence of cubic-quintic nonlinearity and third order dispersion,” J. Nonlinear Opt. Phys. Mater. 16, 119–135 (2007).
[Crossref]
M. J. F. Digonne, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, “Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: a review,” Opt. Fiber Technol. 3, 44–64 (1997).
[Crossref]
J. Santhanam and G. P. Agrawal, “Raman-induced spectral shifts in optical fibers: general theory based on the moment method,” Opt. Commun. 222, 413–420 (2003).
[Crossref]
B. A. Malomed, N. Sasa, and J. Satsuma, “Evolution of a damped soliton in a higher-order nonlinear Schrödinger equation,” Chaos Solitons Fractals 1, 383–388 (1991).
[Crossref]
B. A. Malomed, N. Sasa, and J. Satsuma, “Evolution of a damped soliton in a higher-order nonlinear Schrödinger equation,” Chaos Solitons Fractals 1, 383–388 (1991).
[Crossref]
M. J. F. Digonne, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, “Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: a review,” Opt. Fiber Technol. 3, 44–64 (1997).
[Crossref]
D. Y. Song, X. Shi, C. Wu, D. Tang, and H. Zhang, “Recent progress of study on optical solitons in fiber lasers,” Appl. Phys. Rev. 6, 021313 (2019).
[Crossref]
L. Song, X. Shi, W. Xue, Z. Li, and G. Zhou, “Analysis on femtosecond pulses generated by passively mode-locked lasers with higher-order effects,” Opt. Commun. 246, 495–503 (2005).
[Crossref]
X. Shi, L. Li, R. Hao, Z. Li, and G. Zhou, “Stability analysis and interaction of chirped femtosecond soliton-like laser pulses,” Opt. Commun. 241, 185–194 (2004).
[Crossref]
S. Jana, Shivani, G. S. Parmar, B. Kaur, Q. Zhou, A. Biswas, and M. Belić, “Evolution of bell-shaped dissipative optical solitons from super-Gaussian pulse in parabolic law medium with bandwidth limited amplification,” Optoelectron. Adv. Mater. Rapid Commun. 10, 143–150 (2016).
D. Y. Song, X. Shi, C. Wu, D. Tang, and H. Zhang, “Recent progress of study on optical solitons in fiber lasers,” Appl. Phys. Rev. 6, 021313 (2019).
[Crossref]
L. Song, X. Shi, W. Xue, Z. Li, and G. Zhou, “Analysis on femtosecond pulses generated by passively mode-locked lasers with higher-order effects,” Opt. Commun. 246, 495–503 (2005).
[Crossref]
N. Akhmediev, J. M. Soto-Crespo, and P. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372, 3124–3128 (2008).
[Crossref]
N. Akhmediev, J. M. Soto-Crespo, and G. Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg-Landau equation approach,” Phys. Rev. E 63, 056602 (2001).
[Crossref]
N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, “Stable soliton pairs in optical transmission lines and fiber lasers,” J. Opt. Soc. Am. B 15, 515–523 (1998).
[Crossref]
L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095–1098 (1980).
[Crossref]
B. Fu, Y. Hua, X. Xiao, H. Zhu, Z. Sun, and C. Yang, “Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2 µm,” IEEE J. Sel. Top. Quantum Electron. 20, 411–415 (2014).
[Crossref]
M. Kolobov, A. Mussot, A. Kudlinski, E. Louvergneaux, and M. Taki, “Third-order dispersion drastically changes parametric gain in optical fiber systems,” Phys. Rev. A 83, 035801 (2011).
[Crossref]
D. Pal, S. G. Ali, and B. Talukdar, “Evolution of optical pulses in the presence of third-order dispersion,” Pramana 72, 939–950 (2009).
[Crossref]
H. Zhang, D. Y. Tang, L. M. Zhao, X. Wu, and H. Y. Tam, “Dissipative vector solitons in a dispersion-managed cavity fiber laser with net positive cavity dispersion,” Opt. Express 17, 455–460 (2009).
[Crossref]
X. Feng, H. Y. Tam, and P. K. A. Wai, “Stable and uniform multiwavelength erbium-doped fiber laser using nonlinear polarization rotation,” Opt. Express 14, 8205–8210 (2006).
[Crossref]
D. Y. Song, X. Shi, C. Wu, D. Tang, and H. Zhang, “Recent progress of study on optical solitons in fiber lasers,” Appl. Phys. Rev. 6, 021313 (2019).
[Crossref]
L. Zhao, D. Tang, X. Wu, and H. Zhang, “Dissipative soliton generation in Yb-fiber laser with an invisible intracavity bandpass filter,” Opt. Lett. 35, 2756–2758 (2010).
[Crossref]
H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96, 111112 (2010).
[Crossref]
H. Zhang, D. Y. Tang, L. M. Zhao, and R. J. Knize, “Vector dark domain wall solitons in a fiber ring laser,” Opt. Express 18, 4428–4433 (2010).
[Crossref]
H. Zhang, D. Y. Tang, L. M. Zhao, X. Wu, and H. Y. Tam, “Dissipative vector solitons in a dispersion-managed cavity fiber laser with net positive cavity dispersion,” Opt. Express 17, 455–460 (2009).
[Crossref]
H. Zhang, D. Y. Tang, L. M. Zhao, and N. Xiang, “Coherent energy exchange between components of a vector soliton in fiber lasers,” Opt. Express 16, 12618–12623 (2008).
[Crossref]
L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, and N. Xiang, “Soliton trapping in fiber lasers,” Opt. Express 16, 9528–9533 (2008).
[Crossref]
L. M. Zhao, D. Y. Tang, and J. Wu, “Gain-guided soliton in a positive group-dispersion fiber laser,” Opt. Lett. 31, 1788–1790 (2006).
[Crossref]
Y. Chen, M. Wu, P. Tang, S. Chen, J. Du, G. Jiang, Y. Li, C. Zhao, H. Zhang, and S. Wen, “The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator based saturable absorber,” Laser Phys. Lett. 11, 055101 (2014).
[Crossref]
S. Tang, J. Liu, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Developing compact multiphoton systems using femtosecond fiber lasers,” J. Biomed. Opt. 14, 030508 (2009).
[Crossref]
N. Akhmediev, J. M. Soto-Crespo, and G. Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg-Landau equation approach,” Phys. Rev. E 63, 056602 (2001).
[Crossref]
S. Tang, J. Liu, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Developing compact multiphoton systems using femtosecond fiber lasers,” J. Biomed. Opt. 14, 030508 (2009).
[Crossref]
B. A. Malomed, D. J. Frantzeskakis, H. E. Nistazakis, A. Tsigopoulos, and K. Hizanidis, “Dissipative solitons under the action of the third-order dispersion,” Phys. Rev. E 60, 3324–3331 (1999).
[Crossref]
B. Nagaraju, R. K. Varshney, G. P. Agrawal, and B. P. Pal, “Parabolic pulse generation in a dispersion-decreasing solid-core photonic bandgap Bragg fiber,” Opt. Commun. 283, 2525–2528 (2010).
[Crossref]
Y. Li, L. Wang, Y. Kang, X. Guo, and L. Tong, “Microfiber-enabled dissipative soliton fiber laser at 2 µm,” Opt. Lett. 43, 6105–6108 (2018).
[Crossref]
L. Duan, X. Liu, D. Mao, L. Wang, and G. Wang, “Experimental observation of dissipative soliton resonance in an anomalous-dispersion fiber laser,” Opt. Express 20, 265–270 (2012).
[Crossref]
Y. Zeng, W. Fan, and X. Wang, “The combined effects of intra-cavity spectral filtering on the fiber mode-locked laser,” Opt. Commun. 474, 126152 (2020).
[Crossref]
Y. Chen, M. Wu, P. Tang, S. Chen, J. Du, G. Jiang, Y. Li, C. Zhao, H. Zhang, and S. Wen, “The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator based saturable absorber,” Laser Phys. Lett. 11, 055101 (2014).
[Crossref]
W. Renninger, A. Chong, and F. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).
[Crossref]
A. Chong, L. G. Wright, and F. W. Wise, “Ultrafast fiber lasers based on self-similar pulse evolution: a review of current progress,” Rep. Prog. Phys. 78, 113901 (2015).
[Crossref]
W. H. Renninger and F. W. Wise, “Dissipative soliton fiber lasers,” in Fiber Lasers, O. G. Okhotnikov, ed. (Wiley, 2012), pp. 97–133.
A. Chong, L. G. Wright, and F. W. Wise, “Ultrafast fiber lasers based on self-similar pulse evolution: a review of current progress,” Rep. Prog. Phys. 78, 113901 (2015).
[Crossref]
D. Y. Song, X. Shi, C. Wu, D. Tang, and H. Zhang, “Recent progress of study on optical solitons in fiber lasers,” Appl. Phys. Rev. 6, 021313 (2019).
[Crossref]
Y. Chen, M. Wu, P. Tang, S. Chen, J. Du, G. Jiang, Y. Li, C. Zhao, H. Zhang, and S. Wen, “The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator based saturable absorber,” Laser Phys. Lett. 11, 055101 (2014).
[Crossref]
L. Zhao, D. Tang, X. Wu, and H. Zhang, “Dissipative soliton generation in Yb-fiber laser with an invisible intracavity bandpass filter,” Opt. Lett. 35, 2756–2758 (2010).
[Crossref]
H. Zhang, D. Y. Tang, L. M. Zhao, X. Wu, and H. Y. Tam, “Dissipative vector solitons in a dispersion-managed cavity fiber laser with net positive cavity dispersion,” Opt. Express 17, 455–460 (2009).
[Crossref]
L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, and N. Xiang, “Soliton trapping in fiber lasers,” Opt. Express 16, 9528–9533 (2008).
[Crossref]
L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, and N. Xiang, “Soliton trapping in fiber lasers,” Opt. Express 16, 9528–9533 (2008).
[Crossref]
H. Zhang, D. Y. Tang, L. M. Zhao, and N. Xiang, “Coherent energy exchange between components of a vector soliton in fiber lasers,” Opt. Express 16, 12618–12623 (2008).
[Crossref]
B. Fu, Y. Hua, X. Xiao, H. Zhu, Z. Sun, and C. Yang, “Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2 µm,” IEEE J. Sel. Top. Quantum Electron. 20, 411–415 (2014).
[Crossref]
Z. Xu, L. Li, Z. Li, and G. Zhou, “Soliton interaction under the influence of higher-order effects,” Opt. Commun. 210, 375–384 (2002).
[Crossref]
L. Song, X. Shi, W. Xue, Z. Li, and G. Zhou, “Analysis on femtosecond pulses generated by passively mode-locked lasers with higher-order effects,” Opt. Commun. 246, 495–503 (2005).
[Crossref]
B. Fu, Y. Hua, X. Xiao, H. Zhu, Z. Sun, and C. Yang, “Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2 µm,” IEEE J. Sel. Top. Quantum Electron. 20, 411–415 (2014).
[Crossref]
P. Wan, L. Yang, and J. Liu, “High pulse energy 2 µm femtosecond fiber laser,” Opt. Express 21, 1798–1803 (2013).
[Crossref]
H. Huang, L. Yang, and J. Liu, “Qualitative assessment of laser-induced breakdown spectra generated with a femtosecond fiber laser,” Appl. Opt. 51, 8669–8676 (2012).
[Crossref]
Y. Zeng, W. Fan, and X. Wang, “The combined effects of intra-cavity spectral filtering on the fiber mode-locked laser,” Opt. Commun. 474, 126152 (2020).
[Crossref]
D. Y. Song, X. Shi, C. Wu, D. Tang, and H. Zhang, “Recent progress of study on optical solitons in fiber lasers,” Appl. Phys. Rev. 6, 021313 (2019).
[Crossref]
Y. Chen, M. Wu, P. Tang, S. Chen, J. Du, G. Jiang, Y. Li, C. Zhao, H. Zhang, and S. Wen, “The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator based saturable absorber,” Laser Phys. Lett. 11, 055101 (2014).
[Crossref]
H. Zhang, D. Y. Tang, L. M. Zhao, and R. J. Knize, “Vector dark domain wall solitons in a fiber ring laser,” Opt. Express 18, 4428–4433 (2010).
[Crossref]
H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96, 111112 (2010).
[Crossref]
L. Zhao, D. Tang, X. Wu, and H. Zhang, “Dissipative soliton generation in Yb-fiber laser with an invisible intracavity bandpass filter,” Opt. Lett. 35, 2756–2758 (2010).
[Crossref]
H. Zhang, D. Y. Tang, L. M. Zhao, X. Wu, and H. Y. Tam, “Dissipative vector solitons in a dispersion-managed cavity fiber laser with net positive cavity dispersion,” Opt. Express 17, 455–460 (2009).
[Crossref]
H. Zhang, D. Y. Tang, L. M. Zhao, and N. Xiang, “Coherent energy exchange between components of a vector soliton in fiber lasers,” Opt. Express 16, 12618–12623 (2008).
[Crossref]
L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, and N. Xiang, “Soliton trapping in fiber lasers,” Opt. Express 16, 9528–9533 (2008).
[Crossref]
S. Zhang, G. Zhao, A. Luo, and Z. Zhang, “Third-Order dispersion role on parabolic pulse propagation in dispersion-decreasing fiber with normal group-velocity dispersion,” Appl. Phys. B 94, 227–232 (2009).
[Crossref]
S. Zhang, G. Zhao, A. Luo, and Z. Zhang, “Third-Order dispersion role on parabolic pulse propagation in dispersion-decreasing fiber with normal group-velocity dispersion,” Appl. Phys. B 94, 227–232 (2009).
[Crossref]
Y. Chen, M. Wu, P. Tang, S. Chen, J. Du, G. Jiang, Y. Li, C. Zhao, H. Zhang, and S. Wen, “The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator based saturable absorber,” Laser Phys. Lett. 11, 055101 (2014).
[Crossref]
S. Zhang, G. Zhao, A. Luo, and Z. Zhang, “Third-Order dispersion role on parabolic pulse propagation in dispersion-decreasing fiber with normal group-velocity dispersion,” Appl. Phys. B 94, 227–232 (2009).
[Crossref]
L. Zhao, D. Tang, X. Wu, and H. Zhang, “Dissipative soliton generation in Yb-fiber laser with an invisible intracavity bandpass filter,” Opt. Lett. 35, 2756–2758 (2010).
[Crossref]
H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96, 111112 (2010).
[Crossref]
H. Zhang, D. Y. Tang, L. M. Zhao, and R. J. Knize, “Vector dark domain wall solitons in a fiber ring laser,” Opt. Express 18, 4428–4433 (2010).
[Crossref]
H. Zhang, D. Y. Tang, L. M. Zhao, X. Wu, and H. Y. Tam, “Dissipative vector solitons in a dispersion-managed cavity fiber laser with net positive cavity dispersion,” Opt. Express 17, 455–460 (2009).
[Crossref]
L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, and N. Xiang, “Soliton trapping in fiber lasers,” Opt. Express 16, 9528–9533 (2008).
[Crossref]
H. Zhang, D. Y. Tang, L. M. Zhao, and N. Xiang, “Coherent energy exchange between components of a vector soliton in fiber lasers,” Opt. Express 16, 12618–12623 (2008).
[Crossref]
L. M. Zhao, D. Y. Tang, and J. Wu, “Gain-guided soliton in a positive group-dispersion fiber laser,” Opt. Lett. 31, 1788–1790 (2006).
[Crossref]
L. Song, X. Shi, W. Xue, Z. Li, and G. Zhou, “Analysis on femtosecond pulses generated by passively mode-locked lasers with higher-order effects,” Opt. Commun. 246, 495–503 (2005).
[Crossref]
X. Shi, L. Li, R. Hao, Z. Li, and G. Zhou, “Stability analysis and interaction of chirped femtosecond soliton-like laser pulses,” Opt. Commun. 241, 185–194 (2004).
[Crossref]
Z. Xu, L. Li, Z. Li, and G. Zhou, “Soliton interaction under the influence of higher-order effects,” Opt. Commun. 210, 375–384 (2002).
[Crossref]
S. Jana, Shivani, G. S. Parmar, B. Kaur, Q. Zhou, A. Biswas, and M. Belić, “Evolution of bell-shaped dissipative optical solitons from super-Gaussian pulse in parabolic law medium with bandwidth limited amplification,” Optoelectron. Adv. Mater. Rapid Commun. 10, 143–150 (2016).
B. Fu, Y. Hua, X. Xiao, H. Zhu, Z. Sun, and C. Yang, “Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2 µm,” IEEE J. Sel. Top. Quantum Electron. 20, 411–415 (2014).
[Crossref]
S. Zhang, G. Zhao, A. Luo, and Z. Zhang, “Third-Order dispersion role on parabolic pulse propagation in dispersion-decreasing fiber with normal group-velocity dispersion,” Appl. Phys. B 94, 227–232 (2009).
[Crossref]
H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96, 111112 (2010).
[Crossref]
D. Y. Song, X. Shi, C. Wu, D. Tang, and H. Zhang, “Recent progress of study on optical solitons in fiber lasers,” Appl. Phys. Rev. 6, 021313 (2019).
[Crossref]
B. A. Malomed, N. Sasa, and J. Satsuma, “Evolution of a damped soliton in a higher-order nonlinear Schrödinger equation,” Chaos Solitons Fractals 1, 383–388 (1991).
[Crossref]
S. C. Latas and M. F. S. Ferreira, “Impact of higher-order effects on pulsating and chaotic solitons in dissipative systems,” Eur. Phys. J. Spec. Top. 223, 79–89 (2014).
[Crossref]
B. Fu, Y. Hua, X. Xiao, H. Zhu, Z. Sun, and C. Yang, “Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2 µm,” IEEE J. Sel. Top. Quantum Electron. 20, 411–415 (2014).
[Crossref]
S. Tang, J. Liu, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Developing compact multiphoton systems using femtosecond fiber lasers,” J. Biomed. Opt. 14, 030508 (2009).
[Crossref]
G. S. Parmar and S. Jana, “Bistable dissipative soliton in cubic-quintic nonlinear medium with multiphoton absorption and gain dispersion,” J. Electromagn. Waves Appl. 29, 1410–1429 (2015).
[Crossref]
S. Roy and S. Bhadra, “Study of pulse evolution and optical bistability under the influence of cubic-quintic nonlinearity and third order dispersion,” J. Nonlinear Opt. Phys. Mater. 16, 119–135 (2007).
[Crossref]
B. G. Bale and S. Boscolo, “Impact of third-order fibre dispersion on the evolution of parabolic optical pulses,” J. Opt. 12, 015202 (2009).
[Crossref]
G. S. Parmar, R. Pradhan, B. A. Malomed, and S. Jana, “Dispersion-managed soliton fiber laser with random dispersion, multiphoton absorption and gain dispersion,” J. Opt. 20, 105501 (2018).
[Crossref]
M. Chertkov, I. Gabitov, P. M. Lushnikov, J. Moeser, and Z. Toroczkai, “Pinning method of pulse confinement in optical fiber with random dispersion,” J. Opt. Soc. Am. B 19, 2538–2550 (2002).
[Crossref]
G. S. Parmar, S. Jana, and B. A. Malomed, “Dissipative soliton fiber lasers with higher-order nonlinearity, multiphoton absorption and emission, and random dispersion,” J. Opt. Soc. Am. B 34, 850–860 (2017).
[Crossref]
P. Balla, S. Buch, and G. P. Agrawal, “Effect of Raman scattering on soliton interactions in optical fibers,” J. Opt. Soc. Am. B 34, 1247–1254 (2017).
[Crossref]
G. S. Parmar, S. Jana, and B. A. Malomed, “Dissipative soliton fiber lasers with higher-order nonlinearity, multiphoton absorption and emission, and random dispersion,” J. Opt. Soc. Am. B 34, 850–860 (2017).
[Crossref]
N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, “Stable soliton pairs in optical transmission lines and fiber lasers,” J. Opt. Soc. Am. B 15, 515–523 (1998).
[Crossref]
D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27, B63–B92 (2010).
[Crossref]
S. C. Latas, M. F. S. Ferreira, and M. Facão, “Ultrashort high-amplitude dissipative solitons in the presence of higher-order effects,” J. Opt. Soc. Am. B 34, 1033–1040 (2017).
[Crossref]
Y. Chen, M. Wu, P. Tang, S. Chen, J. Du, G. Jiang, Y. Li, C. Zhao, H. Zhang, and S. Wen, “The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator based saturable absorber,” Laser Phys. Lett. 11, 055101 (2014).
[Crossref]
P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
[Crossref]
Z. Xu, L. Li, Z. Li, and G. Zhou, “Soliton interaction under the influence of higher-order effects,” Opt. Commun. 210, 375–384 (2002).
[Crossref]
J. Santhanam and G. P. Agrawal, “Raman-induced spectral shifts in optical fibers: general theory based on the moment method,” Opt. Commun. 222, 413–420 (2003).
[Crossref]
X. Shi, L. Li, R. Hao, Z. Li, and G. Zhou, “Stability analysis and interaction of chirped femtosecond soliton-like laser pulses,” Opt. Commun. 241, 185–194 (2004).
[Crossref]
L. Song, X. Shi, W. Xue, Z. Li, and G. Zhou, “Analysis on femtosecond pulses generated by passively mode-locked lasers with higher-order effects,” Opt. Commun. 246, 495–503 (2005).
[Crossref]
S. C. V. Latas and M. F. S. Ferreira, “Soliton propagation in the presence of intrapulse Raman scattering and nonlinear gain,” Opt. Commun. 251, 415–422 (2005).
[Crossref]
B. Nagaraju, R. K. Varshney, G. P. Agrawal, and B. P. Pal, “Parabolic pulse generation in a dispersion-decreasing solid-core photonic bandgap Bragg fiber,” Opt. Commun. 283, 2525–2528 (2010).
[Crossref]
Y. Zeng, W. Fan, and X. Wang, “The combined effects of intra-cavity spectral filtering on the fiber mode-locked laser,” Opt. Commun. 474, 126152 (2020).
[Crossref]
X. Gai, D. Choi, and B. Luther-Davies, “Negligible nonlinear absorption in hydrogenated amorphous silicon at 1.55 µm for ultra-fast nonlinear signal processing,” Opt. Express 22, 9948–9958 (2014).
[Crossref]
V. L. Kalashnikov and E. Sorokin, “Dissipative Raman solitons,” Opt. Express 22, 30118–30126 (2014).
[Crossref]
L. Duan, X. Liu, D. Mao, L. Wang, and G. Wang, “Experimental observation of dissipative soliton resonance in an anomalous-dispersion fiber laser,” Opt. Express 20, 265–270 (2012).
[Crossref]
S. K. Wang, Q. Y. Ning, A. P. Luo, Z. B. Lin, Z. C. Luo, and W. C. Xu, “Dissipative soliton resonance in a passively mode-locked figure-eight fiber laser,” Opt. Express 21, 2402–2407 (2013).
[Crossref]
L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, and N. Xiang, “Soliton trapping in fiber lasers,” Opt. Express 16, 9528–9533 (2008).
[Crossref]
H. Zhang, D. Y. Tang, L. M. Zhao, and N. Xiang, “Coherent energy exchange between components of a vector soliton in fiber lasers,” Opt. Express 16, 12618–12623 (2008).
[Crossref]
H. Zhang, D. Y. Tang, L. M. Zhao, and R. J. Knize, “Vector dark domain wall solitons in a fiber ring laser,” Opt. Express 18, 4428–4433 (2010).
[Crossref]
X. Feng, H. Y. Tam, and P. K. A. Wai, “Stable and uniform multiwavelength erbium-doped fiber laser using nonlinear polarization rotation,” Opt. Express 14, 8205–8210 (2006).
[Crossref]
H. Zhang, D. Y. Tang, L. M. Zhao, X. Wu, and H. Y. Tam, “Dissipative vector solitons in a dispersion-managed cavity fiber laser with net positive cavity dispersion,” Opt. Express 17, 455–460 (2009).
[Crossref]
P. Wan, L. Yang, and J. Liu, “High pulse energy 2 µm femtosecond fiber laser,” Opt. Express 21, 1798–1803 (2013).
[Crossref]
M. J. F. Digonne, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, “Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: a review,” Opt. Fiber Technol. 3, 44–64 (1997).
[Crossref]
M. F. Saleh, A. Armaroli, A. Marini, and F. Biancalana, “Strong Raman-induced noninstantaneous soliton interactions in gas-filled photonic crystal fibers,” Opt. Lett. 40, 4058–4061 (2015).
[Crossref]
S. C. V. Latas and M. F. S. Ferreira, “Soliton explosion control by higher-order effects,” Opt. Lett. 35, 1771–1773 (2010).
[Crossref]
Y. Li, L. Wang, Y. Kang, X. Guo, and L. Tong, “Microfiber-enabled dissipative soliton fiber laser at 2 µm,” Opt. Lett. 43, 6105–6108 (2018).
[Crossref]
L. M. Zhao, D. Y. Tang, and J. Wu, “Gain-guided soliton in a positive group-dispersion fiber laser,” Opt. Lett. 31, 1788–1790 (2006).
[Crossref]
L. Zhao, D. Tang, X. Wu, and H. Zhang, “Dissipative soliton generation in Yb-fiber laser with an invisible intracavity bandpass filter,” Opt. Lett. 35, 2756–2758 (2010).
[Crossref]
M. Olivier, V. Roy, and M. Piche, “Third-order dispersion and bound states of pulses in a fiber laser,” Opt. Lett. 31, 580–582 (2006).
[Crossref]
M. Haelterman and A. P. Sheppard, “Polarization domain walls in diffractive or dispersive Kerr media,” Opt. Lett. 19, 96–98 (1994).
[Crossref]
Y. Kodama, M. Romagnoli, S. Wabnitz, and M. Midrio, “Role of third-order dispersion on soliton instabilities and interactions in optical fibers,” Opt. Lett. 19, 165–167 (1994).
[Crossref]
H. Sakaguchi, D. V. Skryabin, and B. A. Malomed, “Stationary and oscillatory bound states of dissipative solitons created by third-order dispersion,” Opt. Lett. 43, 2688–2691 (2018).
[Crossref]
S. Jana, Shivani, G. S. Parmar, B. Kaur, Q. Zhou, A. Biswas, and M. Belić, “Evolution of bell-shaped dissipative optical solitons from super-Gaussian pulse in parabolic law medium with bandwidth limited amplification,” Optoelectron. Adv. Mater. Rapid Commun. 10, 143–150 (2016).
M. I. Carvalho and M. Facao, “Evolution of cubic–quintic complex Ginzburg–Landau erupting solitons under the effect of third-order dispersion and intrapulse Raman scattering,” Phys. Lett. A 376, 950–956 (2012).
[Crossref]
N. Akhmediev, J. M. Soto-Crespo, and P. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372, 3124–3128 (2008).
[Crossref]
M. Facão, M. I. Carvalho, S. C. Latas, and M. F. Ferreira, “Control of complex Ginzburg–Landau equation eruptions using intrapulse Raman scattering and corresponding travelling solutions,” Phys. Lett. A 374, 4844–4847 (2010).
[Crossref]
C. Cartes and O. Descalzi, “Periodic exploding dissipative solitons,” Phys. Rev. A 93, 031801 (2016).
[Crossref]
W. Renninger, A. Chong, and F. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).
[Crossref]
M. Kolobov, A. Mussot, A. Kudlinski, E. Louvergneaux, and M. Taki, “Third-order dispersion drastically changes parametric gain in optical fiber systems,” Phys. Rev. A 83, 035801 (2011).
[Crossref]
S. Roy, S. Bhadra, and G. P. Agrawal, “Dispersive waves emitted by solitons perturbed by third-order dispersion inside optical fibers,” Phys. Rev. A 79, 023824 (2009).
[Crossref]
E. M. Gromov and B. A. Malomed, “Solitons in a forced nonlinear Schrödinger equation with the pseudo-Raman effect,” Phys. Rev. E 92, 062926 (2015).
[Crossref]
N. Akhmediev, J. M. Soto-Crespo, and G. Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg-Landau equation approach,” Phys. Rev. E 63, 056602 (2001).
[Crossref]
B. A. Malomed, “Optical domain walls,” Phys. Rev. E 50, 1565–1571 (1994).
[Crossref]
B. A. Malomed, D. J. Frantzeskakis, H. E. Nistazakis, A. Tsigopoulos, and K. Hizanidis, “Dissipative solitons under the action of the third-order dispersion,” Phys. Rev. E 60, 3324–3331 (1999).
[Crossref]
L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095–1098 (1980).
[Crossref]
F. K. Abdullaev, D. V. Navotny, and B. B. Baizakov, “Optical pulse propagation in fibers with random dispersion,” Physica D 192, 83–94 (2004).
[Crossref]
D. Pal, S. G. Ali, and B. Talukdar, “Evolution of optical pulses in the presence of third-order dispersion,” Pramana 72, 939–950 (2009).
[Crossref]
M. Chertkov, I. Gabitov, and J. Moeser, “Pulse confinement in optical fibers with random dispersion,” Proc. Natl. Acad. Sci. USA 98, 14208–14211 (2001).
[Crossref]
A. Chong, L. G. Wright, and F. W. Wise, “Ultrafast fiber lasers based on self-similar pulse evolution: a review of current progress,” Rep. Prog. Phys. 78, 113901 (2015).
[Crossref]
D. V. Skryabin and A. V. Gorbach, “Colloquium: looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287–1299 (2010).
[Crossref]
W. H. Renninger and F. W. Wise, “Dissipative soliton fiber lasers,” in Fiber Lasers, O. G. Okhotnikov, ed. (Wiley, 2012), pp. 97–133.
G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, 2020).
Y. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, 2003).
N. Akhmediev and A. Ankiewicz, “Dissipative solitons in the complex Ginzburg-Landau and Swift-Hohenberg equations,” in Dissipative Solitons, N. Akhmediev and A. Ankiewicz, eds. (Springer, 2005), pp. 1–17.
G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).