Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Acoustic resonances in concentric and eccentric cylindrical semiconductor nanowires within a two-fluid hydrodynamic model

Not Accessible

Your library or personal account may give you access

Abstract

A two-fluid hydrodynamic model is employed to model the spatial dispersion when both electrons and holes in semiconductors are considered. Within the two-fluid hydrodynamic model, analytical solutions to the nonlocal responses of cylindrical multilayered concentric and eccentric nanowires are obtained using the Mie theory and the scattering matrix method, which are also validated by finite element simulations. It is demonstrated that the greater the geometric asymmetry is, the stronger the acoustic resonance peaks in the extinction cross section spectra will be. In addition, charge distributions of nanowires are investigated, which reveal versatile resonance modes. We believe the proposed analytical approach provides a fast and accurate tool to rapidly analyze and optimize the optical responses of cylindrical multilayered plasmonic devices.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Hydrodynamic acoustic plasmon resonances in semiconductor nanowires and their dimers

Tahereh Golestanizadeh, Abbas Zarifi, Tahmineh Jalali, Johan R. Maack, and Martijn Wubs
J. Opt. Soc. Am. B 36(10) 2712-2720 (2019)

Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response

Giuseppe Toscano, Søren Raza, Antti-Pekka Jauho, N. Asger Mortensen, and Martijn Wubs
Opt. Express 20(4) 4176-4188 (2012)

Classification of scalar and dyadic nonlocal optical response models

M. Wubs
Opt. Express 23(24) 31296-31312 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.