Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

On the dissipative dynamics of entangled states in coupled-cavity quantum electrodynamics arrays

Not Accessible

Your library or personal account may give you access

Abstract

We examine the dissipative dynamics of N00N states with an arbitrary photon number ${\cal N}$ in two architectures of fiber-coupled optical ring resonators (RRs) interacting with two-level quantum emitters (QEs). One architecture consists of a two-way cascaded array of emitter–cavity systems, while in the other architecture, we consider two fiber-coupled RRs, each coupled to multiple dipole–dipole interacting (DDI) QEs. Our focus in this paper is to study how an initially prepared multiple excitation atomic N00N state transfers to the RRs and then how rapidly it decays in these open cavity quantum electrodynamics setups while varying the emitter–cavity coupling strengths, emitter–cavity detuning, and backscattering from cavity modes. We present a general theoretical formalism valid for any arbitrary numbers of QEs, RRs, and ${\cal N}$ numbers in the N00N state for both schemes. As examples, we discuss the cases of single- and two-excitation N00N states and report the comparison of our findings in both schemes. As one of the main results, we conclude that the array scheme tends to store N00N for longer times, while the DDI scheme supports higher fidelity values. The results of this study may find applications in designing new multiparty entanglement-based protocols in quantum metrology and quantum lithography.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Coherent perfect absorption in Tavis-Cummings models

Zibo Wang, Pawan Khatiwada, Dan Wang, and Imran M. Mirza
Opt. Express 30(6) 9360-9379 (2022)

One-way quantum state transfer in a lossy coupled-cavity array

Dong-Xiao Li, Xian-Miao Liao, and Xiao-Qiang Shao
Opt. Express 27(24) 35971-35980 (2019)

Optimal atomic entanglement concentration using coherent-state input–output process in low-Q cavity quantum electrodynamics system

Cong Cao, Chuan Wang, Ling-yan He, Xin Tong, Ming Lei, and Ru Zhang
J. Opt. Soc. Am. B 30(8) 2136-2141 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (41)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved