Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Pulse interactions in periodic and genetic-algorithm-optimized aperiodic epsilon-near-zero multilayers

Not Accessible

Your library or personal account may give you access

Abstract

The epsilon-near-zero (ENZ) multilayer with a vanishing real part of effective permittivity has been proven to have a reflective cutoff effect and an enhanced nonlinear optical response in its ENZ region, making the pulse propagation attract great interest. Here, with the introduction of genetic algorithms (GAs) as a tool to obtain the target spectra, the pulse interactions in ${\rm Ag} {-} {\rm SiO}_2$ alternating stacked multilayers under the ENZ wavelength are numerically studied. It is found that in the original periodic ENZ multilayer, the temporal shapes and spectra first experience a significant attenuation, mainly because of the absorption loss. Afterward, a second peak appears along the propagation path because of localizations and resonances between the layers together with the combined effect of dispersion and nonlinearity. The presented pulse interaction dynamics can provide an insight into the interaction patterns in a periodic ENZ multilayer sample. We use the GAs to obtain a new ENZ multilayer with the same total thicknesses, aperiodic structure, and enhanced reflective properties. The pulse propagation is presented as the physical evidence to further ensure that the optimization has worked well. In this aperiodic sample, the normalized intensity rapidly decreases and the energy is mostly localized near the surface, which indicates the pulse achieves nearly total reflection. Thus, the effect of GA optimization has been confirmed; that is, under extremely high reflection, the pulse can barely propagate through the sample. This optimization toward the reflection spectra of ENZ multilayers could pave the way for a possible design of experimental schemes in a laser cavity, and the cutoff effect of that also could lead to potential applications of pulse shapers and micro/nano Fabry–Perot resonators.

© 2021 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Self-interaction of ultrashort pulses in an epsilon-near-zero nonlinear material at the telecom wavelength

Jiaye Wu, Boris A. Malomed, H. Y. Fu, and Qian Li
Opt. Express 27(26) 37298-37307 (2019)

Experimental demonstration of near-infrared epsilon-near-zero multilayer metamaterial slabs

Xiaodong Yang, Changyu Hu, Huixu Deng, Daniel Rosenmann, David A. Czaplewski, and Jie Gao
Opt. Express 21(20) 23631-23639 (2013)

Thermal absorber with epsilon-near-zero metamaterial based on 2D square spiral design

Ghada Yassin Abdel-Latif, Mohamed Farhat O. Hameed, and S. S. A. Obayya
J. Opt. Soc. Am. B 38(12) 3878-3885 (2021)

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.