Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Polarized grating transition radiation from a 2D photonic crystal

Not Accessible

Your library or personal account may give you access

Abstract

Transition radiation (TR) is widely used as a radiation source in a wide spectral range, from terahertz to x rays. Conventional flat surfaces are usually used, but with the development of applications using microscopically structured surfaces, periodic surface structures are beginning to be studied. The periodicity of the surface dramatically changes the characteristics of TR, so this type of radiation received its own name: grating transition radiation (GTR). In this work, we investigate the polarization properties of GTR from a two-dimensional (2D) photonic crystal consisting of small particles arranged in a flat lattice (a 2D photonic crystal slab). We show theoretically that the polarization properties of GTR differ significantly from those of the kindred types of radiation: conventional TR and Smith–Purcell radiation. Since we found that the asymptotic behavior depending on the electron velocity for GTR and classical TR diverges, we performed homogenization and show that the results for GTR after homogenization are in perfect agreement with those for classical TR. This means that different dependence on the electron velocity for TR from a slab and for GTR from a 2D photonic crystal slab is caused by the fundamental difference between a conventional slab and a 2D photonic crystal due to its microscopic structure. The constructed theory contains the coordinates of the particles the photonic crystal consists of, which allows considering structures of finite size, both symmetrical and asymmetric. For asymmetric targets, the polarization of the radiation proves to be very sensitive to the electron’s trajectory. This sensibility of polarization characteristics opens up good opportunities for studying fine fundamental effects connected with the electron trajectory, such as the effect of the quantum nature of free electrons which manifests itself in the properties of radiation generated by free electrons. Also, the obtained results may find application in the design of compact sources of polarized radiation based on microscopically structured surfaces.

© 2022 Optica Publishing Group

Full Article  |  PDF Article

Corrections

29 November 2022: A correction was made to the acknowledgment section.


More Like This
Theory of unconventional Smith-Purcell radiation in finite-size photonic crystals

Tetsuyuki Ochiai and Kazuo Ohtaka
Opt. Express 14(16) 7378-7397 (2006)

Analysis and design of transition radiation in layered uniaxial crystals using tandem neural networks

Xiaoke Gao, Xiaoyu Zhao, Ruoyu Huang, Siyuan Ma, Xikui Ma, and Tianyu Dong
J. Opt. Soc. Am. B 40(3) 645-653 (2023)

Data availability

No data were generated or analyzed in the presented research.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (32)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.