Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Circular-area-equivalence approach for determining propagation constants of a single-mode polygonal nanowire

Not Accessible

Your library or personal account may give you access

Abstract

One-dimensional crystalline nanowire structures have been widely used as nano-waveguides in nanophotonics. The propagation constant of a certain waveguiding mode in the nanowire is essential to its optical waveguiding properties. To estimate the propagation constant, commonly the cross section of such a nanowire is treated as a circle with a diameter equal to the longest diagonal of the cross section. However, experimentally, crystalline nanowires (e.g., semiconductor nanowires) are usually polygonal in cross section. The diagonal-circle approximation (DCA) is not accurate enough, especially for polygonal cross sections with fewer sides such as triangles, squares, and hexagons. Here, we propose a circular-area-equivalence (CAE) approach to accurately determine the propagation constants of single-mode polygonal nanowires, while maintaining its convenience and simplicity in practical use. Instead of the diagonal circle, here we use a circle with an area equal to that of a real polygonal cross section. Our results show that, compared with the DCA, the CAE approach can offer much higher accuracy for determining propagation constants of single-mode polygonal nanowires, e.g., a deviation of 20.0% of DCA versus 1.9% CAE for normalized effective index (a direct measure of the propagation constant) in a half-wavelength-diameter triangle nanowire. The effectiveness of the CAE approach for nanowires with material dispersion and supporting substrates is also analyzed and verified.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Simulation of waveguiding and emitting properties of semiconductor nanowires with hexagonal or circular sections

Anne-Line Henneghien, Bruno Gayral, Yohan Désières, and Jean-Michel Gérard
J. Opt. Soc. Am. B 26(12) 2396-2403 (2009)

Accurate and efficient simulation for silicon-nanowire-based multimode interference couplers with a 3D finite-element mode-propagation analysis

Yuqing Jiao, Yaocheng Shi, Daoxin Dai, and Sailing He
J. Opt. Soc. Am. B 27(9) 1813-1818 (2010)

Single-mode plasmonic waveguiding properties of metal nanowires with dielectric substrates

Yipei Wang, Yaoguang Ma, Xin Guo, and Limin Tong
Opt. Express 20(17) 19006-19015 (2012)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.