Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Terahertz passive amplification via the temporal Talbot effect in metamaterial-based Bragg fibers

Not Accessible

Your library or personal account may give you access

Abstract

A fully passive terahertz (THz) pulse amplification device is proposed based on leveraging the temporal Talbot effect (TTE) on a highly dispersive silicon-based metamaterial Bragg fiber. To maximize the TTE passive gain, we introduce and explore three different strategies, denoted as coherent pulse addition (CPA), forward Talbot illuminator (FTAI), and backward Talbot illuminator (BTAI). The BTAI strategy allows additional degrees of freedom for controlling the output pulse shape. Moreover, by using a continuous phase profile, we overcome the hurdle of implementing discrete phase gratings in limited time response phase modulators. We explore different pulse shapes and chirped pulses with CPA, and different gain factors with both BTAI and FTAI. Numerical simulation results show a 5.8 dB gain for a 9.8 cm long fiber with the CPA method, a 9.9 dB gain with FTAI (1.37 cm long), and a 8.8 dB gain with BTAI (1.25 cm long). These results indicate the potential of the approaches presented here, which can be used as a springboard for further developments toward high gain passive amplification THz devices.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Pulse rate multiplier based on the temporal Talbot effect in birefringent optical filters

Youcef Driouche, Rachid Hamdi, Leila Graini, Abderezzaq Halassi, and Badr-Eddine Benkelfat
J. Opt. Soc. Am. A 39(4) 682-689 (2022)

Influence of nonideal chirped fiber Bragg grating characteristics on all-optical clock recovery based on the temporal Talbot effect

Masaki Oiwa, Shunsuke Minami, Kenichiro Tsuji, Noriaki Onodera, and Masatoshi Saruwatari
Appl. Opt. 48(4) 679-690 (2009)

Coherent control of the atomic Talbot effect in an N-type Raman-based atomic system

Anees Ahmad, Muhammad Irfan, Sajid Qamar, and Shahid Qamar
J. Opt. Soc. Am. B 39(9) 2295-2299 (2022)

Supplementary Material (1)

NameDescription
Supplement 1       Supplemental document.

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (27)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved