Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Upper hybrid wave excitation and particle acceleration by resonant beating of two hollow Gaussian laser beams in magnetized plasma

Not Accessible

Your library or personal account may give you access

Abstract

This paper investigates the excitation of the upper hybrid wave by resonant beating of two intense hollow Gaussian relativistic laser beams in a magnetized plasma. Hollow laser beams are taken in this study because they have the same power at different beam orders. The interaction of two intense hollow laser beams at the frequency difference ($\Delta \omega \approx {\omega _1} - {\omega _2}$) and wavenumber ($\Delta k = {k_1} - {k_2}$) excites the upper hybrid wave in the magnetized plasma. The excited upper hybrid wave accelerates the electrons to higher energies. The acceleration of electrons has also been studied. This study is carried out under a higher-order paraxial region, where the dielectric constant and the eikonal are expanded to the fourth power of the radial distance. Analytical expressions are obtained for the beam width parameter of the hollow Gaussian laser beams, the electric field of the upper hybrid wave, and the energy gain by the electrons. The effects of various laser and plasma parameters (such as beam order, plasma frequency, and electron cyclotron frequency) on the electric field of the upper hybrid wave and the energy gain of electrons have been explored. The results are compared with paraxial region and the Gaussian profile of laser beams. Numerical analysis has been performed for well-established laser and plasma parameters.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Propagation of two relativistic hollow Gaussian laser beams in magnetized plasma: extended paraxial theory

Gunjan Purohit, Pradeep Kothiyal, and Amita Raizada
J. Opt. Soc. Am. B 39(1) 216-222 (2022)

Propagation of two intense cosh-Gaussian laser beams in plasma in the relativistic-ponderomotive regime

Gunjan Purohit, Bineet Gaur, and Priyanka Rawat
J. Opt. Soc. Am. B 33(8) 1716-1722 (2016)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (28)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.