Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Hybrid opto-electronic deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence

Not Accessible

Your library or personal account may give you access

Abstract

Orbital angular momentum (OAM) has been widely used in underwater wireless optical communication (UWOC) systems due to the mutual orthogonality between modes. However, wavefront distortion caused by oceanic turbulence (OT) on the OAM mode seriously affects its mode recognition and communication quality. In this work, we propose a hybrid opto-electronic deep neural network (HOEDNN) based OAM mode recognition scheme. The HOEDNN model consists of a diffractive DNN (DDNN) and convolutional neural network (CNN), where the DDNN is trained to obtain the mapping between intensity patterns of a distorted OAM mode and intensity distributions without OT interference, and the CNN is used to recognize the output of the DDNN. The diffractive layers of the trained DDNN model are solidified, fabricated, and loaded into a spatial light modulator, and the results recorded by a charge-coupled device camera are processed and fed into the trained CNN model. The results show that the proposed scheme can overcome the interference of OT to OAM modes and recognize accurately azimuthal and radial indices. The OAM mode recognition scheme based on HOEDNN has potential application value in UWOC systems.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Diffractive deep neural network based adaptive optics scheme for vortex beam in oceanic turbulence

Haichao Zhan, Yixiang Peng, Bing Chen, Le Wang, Wennai Wang, and Shengmei Zhao
Opt. Express 30(13) 23305-23317 (2022)

Experimental recognition of vortex beams in oceanic turbulence combining the Gerchberg–Saxton algorithm and convolutional neural network

Wen-Qi Fan, Feng-Lin Gao, Fu-Chan Xue, Jing-Jing Guo, Ya Xiao, and Yong-Jian Gu
Appl. Opt. 63(4) 982-989 (2024)

Speckle-based deep learning approach for classification of orbital angular momentum modes

Venugopal Raskatla, B. P. Singh, Satyajeet Patil, Vijay Kumar, and R. P. Singh
J. Opt. Soc. Am. A 39(4) 759-765 (2022)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.