Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Design and pulse-formation properties of chirped pulse Kerr solitons

Not Accessible

Your library or personal account may give you access

Abstract

Kerr resonators generate stable frequency combs and ultrashort pulses with applications in telecommunications, biomedicine, and metrology. Chirped pulse solitons recently observed in normal dispersion Kerr resonators with an intracavity spectral filter can enable new material design freedom, reduced fabrication requirements, and the potential for improved ultrashort pulse peak powers. This study examines the design and formation properties of chirped pulse Kerr solitons essential to enable these advances. First, prior theoretical predictions that chirped pulse solitons are relatively insensitive to cavity loss and the strength of the dispersion map are experimentally validated. The loss insensitivity property is applied to demonstrate high-energy pulses in a cavity with a large output coupling and the map insensitivity property is applied to demonstrate femtosecond pulses, for the first time to the best of our knowledge, from chirped pulse solitons in a dispersion-mapped cavity with small net-normal dispersion. The relationship between chirped pulses and bright pulses enabled by higher order dispersion is examined with respect to pulse formation, cavity design parameters, and performance properties. Finally, guidelines for additional improvements are detailed for chirped pulse soliton-based high-performance pulse generation.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Chirped dissipative solitons in driven optical resonators

Christopher Spiess, Qian Yang, Xue Dong, Victor G. Bucklew, and William H. Renninger
Optica 8(6) 861-869 (2021)

Experimental observations of bright dissipative cavity solitons and their collapsed snaking in a Kerr resonator with normal dispersion driving

Zongda Li, Yiqing Xu, Stéphane Coen, Stuart G. Murdoch, and Miro Erkintalo
Optica 7(9) 1195-1203 (2020)

Spatiotemporal model of femtosecond pulse generation in Kerr-lens mode-locked solid-state lasers

V. P. Kalosha, M. Müller, J. Herrmann, and S. Gatz
J. Opt. Soc. Am. B 15(2) 535-550 (1998)

Supplementary Material (1)

NameDescription
Supplement 1       Supplemental document.

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.