Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Dynamically switchable multifunctional terahertz absorber based on graphene and vanadium dioxide hybrid metamaterials

Not Accessible

Your library or personal account may give you access

Abstract

A multifunctional terahertz absorber based on a hybrid configuration of vanadium dioxide (${{\rm{VO}}_2})$ and graphene is proposed, which is enabled to dynamically switch between ultrabroadband and double-narrowband absorption characteristics using the phase-shifting property of ${{\rm{VO}}_2}$. When ${{\rm{VO}}_2}$ is in the metallic phase and the Fermi energy level of graphene is 0.01 eV, ultrabroadband absorption from 3.04 THz to 8.78 THz can be achieved. The absorption can be continuously adjusted from 0.7% to 99.9% by changing the conductivity of the ${{\rm{VO}}_2}$ through temperature. When ${{\rm{VO}}_2}$ is in the insulating phase and Fermi energy level of graphene is 0.4 eV, the proposed absorber exhibits a double-narrowband absorption characteristic, achieving 99.8% and 97.3% absorption at 1.79 THz and 4.62 THz, respectively. Since graphene is an electronically controlled material, it is able to dynamically modulate the resonant frequency and absorption intensity by changing the Fermi energy level of graphene. In addition, the physical mechanism of the multifunctional absorber is revealed using electric field distribution and the impedance-matching theory. The proposed absorber has potential applications in optical switching, image processing, and stealth technology.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Dynamically tunable multifunctional terahertz absorber based on hybrid vanadium dioxide and graphene metamaterials

Jing Zhang, Jiejun Wang, Libo Yuan, and Houquan Liu
Appl. Opt. 63(5) 1385-1393 (2024)

Multifunctional terahertz absorber based on the Dirac semimetal and vanadium dioxide

Yong Gang Zhang, Rui Zhang, Lan Ju Liang, Hai Yun Yao, Xin Yan, Cheng Cheng Huang, and Ke Hao Ying
Appl. Opt. 62(3) 813-819 (2023)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but maybe obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.