Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Transient fluorescence with a single trapped ion

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, we present a method to measure transient fluorescent dynamics with single trapped ions in a Paul trap. We use $^{40}{\rm{C}}{{\rm{a}}^ +}$ ions that exhibit a $\Lambda$-type three-level system and measure the characteristic optical pumping times between the ground ${S_{1/2}}$ and the meta-stable ${D_{3/2}}$ levels. We prepare one of these states and then pump it to the opposite via the excited ${P_{1/2}}$ state. By measuring the scattered photons of the ion, we retrieve transient curves of the atomic fluorescence. These curves provide fundamental information about the atomic system, such as branching fractions and excited-state lifetimes, as well as experimental parameters like the efficiency of the detection system and the saturation parameter of one of the transitions. Finally, we study the time-dependent fluorescence as a function of optical power and detuning of the lasers and find a very good agreement with simulating the dynamics via a three-level open quantum system through a set of optical Bloch equations. Being able to record time-dependent fluorescence is of particular interest as it contains information about the temperature, cooling, and heating dynamics of the ion.

© 2023 Optica Publishing Group

Full Article  |  PDF Article

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.