Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Inverse design of a grating metasurface for enhancing spontaneous emission through hyperbolic metamaterials

Not Accessible

Your library or personal account may give you access

Abstract

This work is concerned with inverse design of the grating metasurface over hyperbolic metamaterials (HMMs) in order to enhance spontaneous emission (SE). We formulate the design problem as a PDE-constrained optimization problem and employ the gradient descent method to solve the underlying optimization problem. The adjoint-state method is applied to compute the gradient of the objective function efficiently. Computational results show that the SE efficiency of the optical structure with the optimized metasurface increases by 600% in the near field compared to the bare HMM layer. In particular, an optimized double-slot metasurface obtained by this design method enhances the SE intensity by a factor of over 100 in the observation region.

© 2024 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Dye-embedded and nanopatterned hyperbolic metamaterials for spontaneous emission rate enhancement

K. H. Krishna, K. V. Sreekanth, and G. Strangi
J. Opt. Soc. Am. B 33(6) 1038-1043 (2016)

Hyperbolic metamaterial resonator–antenna scheme for large, broadband emission enhancement and single-photon collection

Faraz A. Inam, Nadeem Ahmed, Michael J. Steel, and Stefania Castelletto
J. Opt. Soc. Am. B 35(9) 2153-2162 (2018)

Angular selection of transmitted light and enhanced spontaneous emission in grating-coupled hyperbolic metamaterials

Dasol Lee, Minkyung Kim, Jongmin Lee, Byoungsu Ko, Hui Joon Park, and Junsuk Rho
Opt. Express 29(14) 21458-21472 (2021)

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (21)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.