Abstract
The small-signal amplification properties of a semiconductor laser are quantified within the framework of dynamical-systems bifurcation theory. Calculations are performed at or near a Hopf bifurcation associated with a modal switching instability in the device. The work is directed at finding practical applications for nonlinear dynamical phenomena. In addition the work underlines the importance of the laser diode as a convenient optical system for studying the properties of general dynamical systems. It is argued that the laser diode may thus play a unique role both in stimulating the need for new insights into dynamical systems and also in permitting implementation of novel nonlinear phenomena for device applications.
© 1988 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Figures (2)
You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Tables (1)
You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Equations (11)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription